
JCallGraph: Tracing Microservices
in Very Large Scale Container Cloud

Platforms

Haifeng Liu1,2(B), Jinjun Zhang1, Huasong Shan1, Min Li1, Yuan Chen1,
Xiaofeng He1, and Xiaowei Li1

1 JD.com, Beijing, China
2 University of Science and Technology of China, Hefei, China

{bjliuhaifeng,zhangjinjun1,huasong.shan,min.li,yuan.chen,
hexiaofeng,lixiaowei1}@jd.com

Abstract. Microservice architecture splits giant and complex enterprise
applications into fine-grained microservices, promoting agile develop-
ment, integration, delivery and deployment. However, monitoring tens
of thousands of microservices is extremely challenging, and debugging
problems among massive microservices is like looking for a needle in a
haystack. We present JCallGraph, a tracing and analytics tool to capture
and visualize the microservice invocation relationship of tens of thou-
sands of microservices with millions of containers at JD.com. JCallGraph
achieves three main goals for distributed tracing and debugging: online
microservices invocation construction within milliseconds, minimal over-
head without any significant performance impact on real-production
applications, and application-agnostic with zero-intrusion to application.
Our evaluation shows that JCallGraph can accurately capture the real-
time invocation relationship at massive scale and help developers to effi-
ciently understand interactions among microservices, pinpoint root-cause
of problems.

Keywords: Microservice invocation graph ·
Distributed tracing system · Performance analysis and measurement

1 Introduction

Microservice architecture is increasingly embraced in enterprise in recent years
due to its advantages and the advancement of container technologies [2–4,16,
20,25]. Compared to monolithic architectures, microservice paradigm breaks up
complicated enterprise applications and software into smaller, modular, inde-
pendent components communicating through lightweight mechanisms such as a
HTTP RESTful API. Since the components can be developed and maintained
independently, it allows better development agility, isolation, resilience and scal-
ability. However, as the number of services continue to grow in microservice
platforms, the communication between components becomes complex resulting
c© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 287–302, 2019.
https://doi.org/10.1007/978-3-030-23502-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-23502-4_20


288 H. Liu et al.

in high maintenance cost. In particular, it is difficult to identify root causes when
errors occur or diagnose performance bottlenecks as the interactions between
microservices are too complex to trace.

At JD.com [10], the world’s third largest and China’s largest e-commerce site,
we provide more than 8000 applications and approximate 34,000 microservices
run on the cluster of 500,000 containers, and support over 250 billions of RPC-
based microservice calls per day. A microservice typically interacts with hundreds
or even thousands of other microservices, not to mention that these services are
often deployed and executed across a large number of containers or machines
for performance and reliability. Moreover, the interactions change dynamically
when services evolve and are developed independently. Thus, it is difficult to
trace the communications and detect the updated system behavior whenever a
component is changed.

Existing distributed tracing systems, such as Google’s Dapper [24], Mace [11],
Stardust [19], X-Trace [6], Retro [13], Pivot Tracing [14], can be used to monitor
and trace the timing and interactions of system components. Yet, they cannot be
directly applied into our container-based microservice platform that has millions
of service instances. At JD.com, we particularly focus on the following require-
ments and challenges that enable our system to effectively trace microservices
at massive scale.

Firstly, how do we provide microservice level transparency while automati-
cally tracing all applications in the microservice platforms without active involve-
ment of upper level services and applications? A tracing system that requires
input from upper level components is more fragile and takes significantly more
efforts to encourage the adoption. Inspired by Dapper [24], our system adopts
an approach of limiting the intrusion within the underlying middleware such as
JSF, JMQ and JIMDB.

Secondly, how do we effectively capture all the critical points in both physical
and logical invocation chains? We want to minimize the intrusion of our tracing
system into the existing microservice middleware while guaranteeing to capture
interesting and critical points in execution paths. A physical invocation chain
represents an actual execution path whereas a logical invocation chain refers to
a business logic flow. One logical invocation chain usually contains one or more
physical invocation chain. It is also important to minimize the overhead of the
tracing system in our microservice framework. If the overhead is not negligible,
the adoption of the system would be significantly impacted as users are likely to
turn them off. Finally, the tracing system should be scalable to support tracing
of all microservices that run on millions of containers.

In this paper, we present JCallGraph, a distributed tracing system that
tracks the interactions and timing information of microservices across systems
and machines. The logical invocation chains captured are particularly important
to JD.com as it helps develop and maintain complex business logic. JCallGraph
addresses the challenges by only intruding the underlying middleware of the
microservice platform, and eliminating the need to intrude applications. JCall-
Graph also leverages sampling to dramatically reduce the overhead of the system.
Efficient log transfer layer and in-memory storage layer are integrated to ensure



JCallGraph: Tracing Microservices 289

real time analysis and visualization. JCallGraph provides better understanding
of the system such as analyzing complex execution paths across microservices.
Other functionalities include timing and bottleneck analysis, analyzing statistics
of calling information or the entrance points, and analyzing the dependencies
within an invocation chain.

In particular, our paper has contributions as follows:

– Distributed dynamic tracing to provide a holistic view of both physical and
logical invocation chains for large-scale microservice-based applications in an
enterprise cloud platform with millions of containers.

– Careful intrusion of core middlewares to eliminate active involvement of appli-
cations; short UUID, low rate sampling and high compression context to
increase the performance and scalability of the system.

– Comprehensive stress tests in test environment and deployment in real pro-
duction environment, and use cases from our experiences, demonstrating the
effectiveness and efficiency of JCallGraph.

We outline the rest of this paper as follows. Section 2 introduces microser-
vices in action at JD.com. Section 3 describes the design and implementation of
JCallGraph. Performance evaluation results and use cases are in Sect. 4. Section 5
presents the related work and Sect. 6 concludes the paper.

2 Microservices in Action at JD.com

The microservice architecture and container techniques facilitate software devel-
opment, maintenance and delivery. So far we provide 34,000 microservices
deployed in 500,000 containers managed by JDOS [26], a Kubernetes-based dat-
acenter operating system. Such a huge number of microservices invoke each other
to serve various business units, e.g., JD Retails [10], JD Finance [8], JD Logis-
tics [9] etc. It is hard to observe and monitor the microservice invocation rela-
tionship in such a large-scale real-production environment. Figure 1 shows part
of microservice invocation graph at JD.com. This actual demand motivated us to
design JCallGraph: a monitoring system for tracing and visualizing the microser-
vice invocation relationship.

To manage and support the development of large-scale microservices effec-
tively and efficiently, we develop JSF, an RPC framework supporting; JMQ, a
distributed messaging and streaming platform; JIMDB, a journaled in-memory
database compatible with Redis [17]. As shown in Fig. 2, each application consists
of multiple microservices. These applications synchronously invoke microservices
through JSF, asynchronously communicate with each other through JMQ, and
retrieve and store data in JIMDB. All of the applications work together to per-
form e-commerce or other transactions at JD.com.

JCallGraph serves as a tracing and visualization tool to show the microservice
invocation graph among various applications. The objective of JCallGraph is
to construct the microservice invocation relationship graph in the large-scale
container environments on the fly, at the same time, it requires minimal impact
to applications in real-production environment.



290 H. Liu et al.

Fig. 1. Microservice graph at JD.com.

Fig. 2. An illustration of microservice invocation at JD.com. JSF as a syn-
chronous framework, JMQ as an asynchronous messaging queue, JIMDB as a in-
memory database.

3 Design and Implementation

3.1 Overview

To construct the invocation graph of microservices in the large-scale container
environments, this greatest challenge is how to represent the invocation relation-
ship, including the call flow and data flow. Previous work [24] uses end-to-end
request flow tracing techniques to construct sequential and parallel activities in
distributed systems. However, we have a unique requirement to fully compre-
hend the invocation relationship in our applications. For example, a customer
purchases a product from JD Retails, pays through JD Finance, tracks the deliv-
ery using JD logistics. To monitor the performance of this business transaction,
we need trace the real-time invocation graph among various microservices pro-
vided by several applications deployed across different machines and even across
data centers. To this end, we not only need to construct the physical request-
response flow as the previous work do, we also need to construct the logical
microservice invocation graph, e.g., e-commercial order number.



JCallGraph: Tracing Microservices 291

Here, we use physical chain to trace the actual request flow among the appli-
cations, and logical chain to trace the business logic request chain for a special
business requirement. All the logical and physical chains compose the complex
microservice invocation graph at massive scale. Specifically, we design several
identifiers (ID) to capture the microservice invocation graph. Specifically, we
use two types of identifiers to represent the runtime invocation relationship
for the applications and microservices: static identifiers (e.g., application ID,
microservice ID) which are generated when the application and the microservice
registered; and dynamic identifiers (e.g., global logical chain ID, RPC ID) which
are generated during the runtime. In addition, since the invocation relationship
is similar to a tree, we record the detailed structure of an invocation tree, such
as the entry, parent, current node using these identifiers.

Fig. 3. Overview of JCallGraph’s process pipeline.

Based on this idea, we design JCallGraph, including four components as
shown in Fig. 3 (1) Trace Layer, tracing the invocation relationship in the mid-
dlewares (e.g., JSF, JMQ, JIMDB etc.); (2) Transfer Layer, transferring the
traced invocation information to storages; (3) Storage Layer, storing the real-
time data in JIMDB and offline analytic data in Elasticsearch1 (4) Visualization
and Analytics Layer, visualizing and deeply analyzing the microservices and
their invocation relationship.

3.2 Tracing Microservices via Intruding upon Core Middlewares

JCallGraph’s goal is to accurately construct microservice invocation graph at a
lower cost without application intrusion. At JD.com, we use JSF, the microser-
vice management platform to support over 250 billions of RPC-based microser-
vice calls per day. To trace these invocation relationship, we add minimal critical
tracing points in the core middlewares (e.g., JSF, JMQ, JIMDB), making zero
code intrusion to thousands of applications and millions of microservices.

Primitives. JCallGraph’s tracing layer provides several primitives to record the
microservice invocation context, e.g., startTrace, endTrace, clientSend, server-
Rev, etc. We carefully place the primitives in the middlewares where it can record
the request-response relationship among the microservices with minimal tracing
points. Figure 4 depicts a concrete process to construct the invocation context
using these primitives in the middlewares. Through the middleware (e.g., JSF,
JMQ, JIMDB etc.), the front-end applications invoke startTrace to generate the
global chain id and start a runtime invocation track; the upstream applications
1 Elasticsearch. “https://www.elastic.co/”.

https://www.elastic.co/


292 H. Liu et al.

Fig. 4. A process to construct the invocation context using the primitives provided
by JCallGraph. All the applications are unaware of the tracing process, since all the
tracing points are in the middlewares.

invoke clientSend to record the start timestamp of the upstream application;
once the downstream applications receive the request, they invoke serverRecv
to record the start timestamp of the downstream application; after the down-
stream applications process the request, they invoke the serverSend to generate
the downstream RPC id, record the end timestamp of the downstream applica-
tion; once the upstream applications receive the response, they invoke clientRecv
to generate the upstream RPC id and record the end timestamp of the upstream
application; finally the front-end applications call endTrace to finish the specific
runtime invocation track.

Tracing Invocations. The applications implement a RPC synchronous invo-
cation by the interfaces provided by JSF. The invocation context is transferred
during the process of the JSF, thus JCallGraph can restore the context of the
synchronous invocation by plugging the primitives into the interfaces of JSF.
For the asynchronous invocation, it involves the transparent transfer of the con-
text among multi-threads. There are two cases as shown in Fig. 5: creating a
new thread and requesting a thread from thread pools. JCallGraph intercepts
the invocation context by adopting Java bytecode instrumentation technique [5]
when JCallGraph’s tracing primitives are called in the core middleware.

3.3 Low Overhead Tracing

To reduce the overhead in tracing layer and minimize the impact on the perfor-
mance of applications, we adopt several specific techniques in the following.

Short UUID. We use unique identifier to record the entry, parent, current node
in an invocation tree to record the runtime invocation relationship. Popular dis-
tributed systems such as OpenStack, Spark, and Hadoop use the universally



JCallGraph: Tracing Microservices 293

Fig. 5. Tracing the asynchronous invocation among multi-threads, including creating
a new thread (left) and requesting a thread from the thread pool (right).

unique identifier (UUID), an 32 hexadecimal characters. However, 32 charac-
ters are too expensive for the tracing context, since it incurs more stress to the
transfer and storage layer. Therefore, we use bit operations and cut down 32
characters into the 8 hexadecimal short UUID to uniquely represent these nodes
of an invocation tree, which can dramatically reduce the overhead while still
achieving similar low probability of conflicting identifiers as that by the tradi-
tional hexadecimal UUIDs with 32 bits. In our experiments, we observe that the
likelihood of identifier conflict is one in a million, it is more than enough to dis-
tinguish all invocation chains since we can identify the invocation chain as long
as all the RPC IDs in a runtime invocation chain is unique. Most importantly,
the 8 hexadecimal short UUID can dramatically accelerate the tracing, transfer
and visualization process.

Low Rate Sampling. Inspired by Dapper [24], to further reduce the impact
on the applications, we use sampling. The difference is that we only sample suc-
cessful invocation meanwhile recording all failure invocation. The benefit is that
we can use very low sampling rate, but we still can guarantee the accuracy of
constructing the normal invocation relationship. In our case the normal invo-
cation is repeatable, once we miss some tracing, we can retry to guarantee the
accuracy of constructing the invocation graph. We do not miss any failure invo-
cation, which is useful for root-cause analysis. Various sampling rate impacts on
the network traffic of transfer layer is available in Sect. 4.2.

All In-Memory. To eliminate the I/O contention between JCallGraph and the
applications incurred by recording the call context, all the operations in tracing
layer are in-memory, and we adopt an unlocked ring memory buffer to buff the
traced context of the applications. Once the buffer is full, our policy is to drop
these contexts to guarantee the efficiency of the applications, meanwhile we still
can accurately construct the invocation graph through retrying.



294 H. Liu et al.

3.4 Realtime Transfer and Visualization

We transfer the traced invocation information to underlying storage system
through a transfer layer cluster, which consists of 16 nodes in real production
environment, each node serves approximate thousands of application machines
for tracing transfer through long keep-alive TCP connections. The real-time
invocation information data are stored in the in-memory Database JIMDB and
further offline analytic data are stored in Elasticsearch. JIMDB, as a cache
layer, supports JCallGraph to visualize the online invocation graph of the micro-
services within milliseconds.

High Compression Context. In transfer layer, the main overhead comes from
the additional network bandwidth consumption [18], which increases as the size
of the messages increases which carry the information of invocation relation-
ship. We represent the microservice invocation graph with the minimal context
information. In particular, we effectively compress the invocation context by
exploring the similarity between the contexts. In our cases, the same invocation
chain typically shares the same context, and the invocation relationship is static
for a specific application. Thus, we can achieve a very high compression ratio,
usually 1/10 as observed in production environment. We observe that the actual
message size is approximate 112 bytes for most of real-production applications,
and using the message size can achieve the optimal throughput and resource
utilization in our real-production environments. Detailed explanation can refer
to our stress testing as shown in Sect. 4.2.

4 Evaluation and Experiences

4.1 Operation Data at JD.com

So far JCallGraph has been deployed in real-production environment for over
than two years at JD.com, monitoring more than 8000 applications and approx-
imate 34,000 microservices run on the cluster of 500,000 containers, tracing over
250 billions of RPC-based microservice calls per day.

Figure 6 shows the daily rates of real time microservice invocation amount
and chain amount traced by JCallGraph in December 2018. All the transactions
at JD (including JD Retails [10], JD Finance [8], JD Logistics [9] etc.) averagely
trigger approximate 250 billions of microservice calls per day shown in the left.
Using JCallGraph can effectively trace such massive scale microservice invoca-
tion relationship, around 500 millions of invocation chain amount per day as
shown in the right.

4.2 Performance of JCallGraph

In this section, we evaluate the performance of JCallGraph from three key
aspects through stress tests: the impact to applications caused by JCallGraph,
the performance impact of various message size in log transfer layer, and the
impact of various sampling rate.



JCallGraph: Tracing Microservices 295

Fig. 6. One Month Operation Data in Dec. 2018. The transactions at JD.com
averagely trigger approximate 250 billions of microservice calls per day shown in the
left, JCallGraph records around 500 millions of invocation chain amount per day shown
in the right.

Fig. 7. Impact to applications under stress test when JCallGraph tracing is
on and off. When the load of application is 20K per second, that is the usual load in our
real-production environments, the around 1% overhead increase cause by JCallGraph
has negligible impacts on applications. Meanwhile the 99th percentile latency of the
applications in two scenarios is almost the same.

Impact to Applications Caused by JCallGraph. We first evaluate the
impact to applications caused by JCallGraph via stress test in a test environ-
ment, where we deploy four client machines and one application server. Each
machine is equipped with Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz, 32 GB
memory and 1 GB network. We use HP LoadGenerator [7] to generate the work-
loads of stress test in the client machines. We generate various workloads, the
maximum workload did not go beyond 170K because we observe that the load of
applications does not exceed more than 30K most of the time in real-production
environment. We deploy one application in server machines to serve the requests
from the clients, the application invokes middlewares (e.g., JSF) meanwhile the
tracing primitives of JCallGraph are invoked in the middlewares. We compare
the overhead of the server and 99th percentile latency of the applications in two
scenarios: switching on and off the tracing of JCallGraph.

Figure 7 illustrates the average CPU usage of the server and 99th percentile
latency of the applications, when the number of requests handled by the server
increases from 10K to 170K and JCallGraph tracing is on and off, usages of other
resources (e.g., memory) are omitted since they are almost the same. We see that



296 H. Liu et al.

as the load from client machines continues to increase, the CPU usage of the
server with JCallGraph on and off increases correspondingly as the application
needs to handle more requests. JCallGraph has a maximum of CPU overhead of
4.9% when the load arrives at 170K. Since the load of application in production
is usually around 20K, a JCallGraph overhead of 1.9% has negligible and accept-
able impacts on applications. The 99th percentile latency of the applications in
the two cases is almost the same under various workloads.

Fig. 8. The throughput and resource usage of log transfer layer with the var-
ious size of the message. It confirmed that the message size of 112 bytes, the actual
message size in our real-production applications, can achieve the maximal throughput
and resource usage environments.

Performance of Log Transfer Layer. We next study the performance of
log transfer layer with the various size of the message carrying the information
of traced microservice invocation relationships. In this experiment, we use one
docker container as the transfer server and 50 docker containers as clients to
send log messages. The server is equipped with 4 CPU cores, 8G memory, 50G
disk and 10G ethernet.

Figure 8 illustrates how the length of messages impacts the throughput of log
transfer layer and the resource usage. The y axis on the right refers to the maxi-
mum loads from clients which the server can sustain without losing any packages.
We see that as the length of messages increases from 100 bytes to 250 bytes, the
throughput of the transfer server decreases and the CPU usage drops from 99%
to 72%. The reason is that as the messages size increases, the network bandwidth
becomes the bottleneck in the real-production test environment leading to loss
a lot of packages.

In real applications, the actual message size is around 112 bytes. Thus this
result in Fig. 8 confirmed that the current context information and message size
can achieve the maximal throughput and resource usage in our real-production
environments.



JCallGraph: Tracing Microservices 297

Impact of Sampling Rate. We examine how the sampling rate reduces the
number of packages sent per second, the network consumption as well as the
burden of transfer server. In Fig. 9, we increase the client loads to report the
number of packages sent by the application in log scale in various sampling rate
from 1 to 4000. In all cases, we can successfully construct the normal invocation
relationship. We see that the number of packages transferred without sampling
compared with the number with sampling turned on is mostly proportional to the
sampling rate. That means as the heavier the load the more network bandwidth
consumption is saved.

Fig. 9. Impact of sampling rate. Lower sampling rate can reduce the traffic pressure
to the transfer layer.

JCallGraph uses different policy to record the invocation information for suc-
cessful and failure microservice calling, and the accuracy of successful invocation
context can be guaranteed by retry policy, thus we can use very low sampling
rate to reduce the network pressure of transfer server.

4.3 Use Cases

In this section we share some use cases at JD.com, how JCallGraph helps devel-
opers to understand interactions among microservices, detect the problems and
pinpoint the root-cause, analyse the dependencies of microservices.

Microservice Visualization. JCallGraph provides an interactive interface
allowing users to visually explore the relationship across all microservices. Using
the visualization, the developers can now then easily view the microservice
invocation relationship. Figure 10 shows real-production application examples



298 H. Liu et al.

Fig. 10. Snapshots of microservice invocation graphs for real-production applications.

of microservice visualization. Intuitively, the developers free themselves from
the complex and massive microservices, effective manage tens of thousands of
microservices at JD.com. For example, JCallGraph helps to track the transi-
tion of products within the business flow of a Storm2 application by tracing the
processing flow of stock keeping unit (SKU)3 of products.

Root Cause Analysis. Another important use cases of JCallGraph in JD.com
is to help identify performance bottleneck and diagnose root causes [21–23,27].
JCallGraph provides an intuitive view to understand context allowing developer
to quickly identify the location of errors with a meaning dynamic calling chain
context. Figure 11 shows an example of invocation chain of an application where
the exceptions occur and are marked as red. Note that the latency information is
conveniently available showing that the top level exception takes around 50 ms.
When an exception occurs, this call chain information can be easily accessed with
the traceID that is injected into the application log. Based on this information,
developers can quickly locate the corresponding portion of code and the runtime
machine that produces the error and analyse why the error occurs under the
current dynamic execution path.

Invocation Dependency Analysis. In addition to help identify root causes
when exceptions or anomalies occur, JCallGraph offers various detailed analysis
in terms of invocation dependencies and frequency analysis. We define two differ-
ent types to represent the severity of dependency in JCallGraph, strong depen-
dency and weak dependency. A call in an invocation chain has strong dependency
when the call fails, all the subsequent calls can not be invoked, whereas a call

2 Apache Storm. “http://storm.apache.org/”.
3 A stock keeping unit is a product or service identification code.

http://storm.apache.org/


JCallGraph: Tracing Microservices 299

Fig. 11. An example of root cause analysis. This figure shows errors of an invo-
cation chain recorded by JCallGraph, we can further inspect the microservices with
error and long latency to pinpoint the root cause.

Fig. 12. An example of invocation chain analysis. LR, DR, CR can be used to
analyse the bottleneck, two types of frequency dependency as a caller and a callee.
[L- level, LR - response time ratio, DR - dependency ratio, CR - calling ratio]

with weak dependency is the one when the call fails, some or all the subsequent
calls are still invoked. Figure 12 marks strong and weak dependency in an invo-
cation chain. Errors occur on calls with strong dependency are more severe than
calls with weak dependency and usually have higher priority to be fixed.

Invocation frequency is another interesting insight for development and oper-
ation. We define two types of frequency dependencies in JCallGraph. One is the
frequency as a callee in an invocation chain using the metrics of calling ratio



300 H. Liu et al.

(CR), and the other is the frequency as a caller invoking other microservices
in an invocation chain using the metrics of dependency ratio (DR). Figure 12
shows an example of invocation frequency analysis in an invocation chain. One
successful use case of using invocation frequency analysis at JD.com is to plan
the resource capacity. For example, JD.com launched its annual 6.18 Shopping
Festival [1], we need to accurately estimate the usage frequency of microservices
and plan the capacity and significantly improve the resource utilization while
guaranteeing the performance of front-end on-line services during the period of
annual 6.18 Shopping Festival.

Other Use Cases. There are other use cases of JCallGraph at JD.com such
as entrance point and source analysis. Entrance point analysis identifies the first
call in the calling chain where source analysis recognizes the callers and the
callees of the current method. Entrance point analysis together with frequency
analysis is used for capacity planning for shopping seasons or promotional sales
days. As entrance points are the first call in the chain which can be invoked
by frontend applications. It is easier to estimate the capacity from top to down
following the chains. Source analysis is useful in that it helps developers to know
exactly the upstream and downstream applications. Such information is used for
new feature development and rolling updates.

5 Related Work

End-to-end request-flow tracing techniques are extensively implemented in dis-
tributed systems to support various performance monitoring tasks, such as
Google’s Dapper [24], Mace [11], Stardust [19], X-Trace [6], Retro [13], Pivot
Tracing [14] etc. They gives us a lot of insights to design and implement JCall-
Graph to guarantee low overhead, such as sampling, trace points. However, they
are not applied in such massive scale container environment.

OpVis [15] implements a monitoring and analytics framework in container
environments to provide visualization and analytics, and DocMan [12] adopts
the approaches such as distance identification and hierarchical clustering for
detecting containerized application’s dependencies, which are orthogonal and
complementary to our works. JCallGraph, as the microservice monitoring plat-
form at JD.com, provides a billion-scale invocation graph visualization as shown
in Fig. 6 in Sect. 4.1, that is beyond the grasp of OpVis. More importantly, we
can visualize the interactive microservices invocation graph in realtime, incur
negligible overhead and not intrude applications, which can be practical in real-
production industrial scenarios.

6 Conclusion

We presented JCallGraph, a tracing and analytics tool to visualize the microser-
vice invocation graph for massive scale microservice platform in enterprise data-
center. Our evaluation and experiences at JD.com show that JCallGraph can



JCallGraph: Tracing Microservices 301

accurately capture the real-time invocation relationship among tens of thousands
of microservices in millions of containers, one of the largest Kubernetes clusters in
real production in the world, while achieving minimal overhead without any sig-
nificant performance impact on real-production applications, and zero-intrusion
to the code of applications. We hope that sharing our practice with the massive
scale tracing system will provide insights to solve the challenges of monitoring
and managing tens of thousands of microservices in enterprise data-center.

References

1. JD.com’s 6.18 Shopping Festival. https://www.fungglobalretailtech.com/news/jd-
coms-6-18-shopping-festival-just-discounts/

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

4. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 3, 81–84 (2014)

5. Binder, W., Hulaas, J., Moret, P.: Advanced Java bytecode instrumentation. In:
Proceedings of the 5th International Symposium on Principles and Practice of
Programming in Java, pp. 135–144. ACM (2007)

6. Fonseca, R., Freedman, M.J., Porter, G.: Experiences with tracing causality in
networked services. INM/WREN 10, 10 (2010)

7. HP: LoadRunner. https://www.claudihome.com/html/LR/WebHelp/Content/
Controller/toc MainController.htm

8. JD: Finance. https://jr.jd.com
9. JD: Logistics. https://www.jdwl.com

10. JD: Retails. https://www.jd.com
11. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.M.: Mace: language

support for building distributed systems. In: ACM SIGPLAN Notices, vol. 42, pp.
179–188. ACM (2007)

12. Liu, P., et al.: A toolset for detecting containerized application. In: 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), pp. 194–201. IEEE
(2018)

13. Mace, J., Bodik, P., Fonseca, R., Musuvathi, M.: Retro: targeted resource manage-
ment in multi-tenant distributed systems. In: NSDI, pp. 589–603 (2015)

14. Mace, J., Roelke, R., Fonseca, R.: Pivot tracing: dynamic causal monitoring for
distributed systems. In: Proceedings of the 25th Symposium on Operating Systems
Principles, pp. 378–393. ACM (2015)

15. Oliveira, F., Suneja, S., Nadgowda, S., Nagpurkar, P., Isci, C.: OpVis: extensible,
cross-platform operational visibility and analytics for cloud. In: Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference: Industrial Track, pp. 43–49.
ACM (2017)

16. Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Comput. 2(3), 24–31
(2015)

17. RedisLabs: Redis. https://redis.io

https://www.fungglobalretailtech.com/news/jd-coms-6-18-shopping-festival-just-discounts/
https://www.fungglobalretailtech.com/news/jd-coms-6-18-shopping-festival-just-discounts/
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://www.claudihome.com/html/LR/WebHelp/Content/Controller/toc_MainController.htm
https://www.claudihome.com/html/LR/WebHelp/Content/Controller/toc_MainController.htm
https://jr.jd.com
https://www.jdwl.com
https://www.jd.com
https://redis.io


302 H. Liu et al.

18. Sambasivan, R.R., Shafer, I., Mace, J., Sigelman, B.H., Fonseca, R., Ganger, G.R.:
Principled workflow-centric tracing of distributed systems. In: Proceedings of the
Seventh ACM Symposium on Cloud Computing, pp. 401–414. ACM (2016)

19. Sambasivan, R.R., et al.: Diagnosing performance changes by comparing request
flows. In: NSDI, 5, p. 1 (2011)

20. Sandoval, R., et al.: A case study in enabling DevOps using Docker. Ph.D. thesis
(2015)

21. Shan, H., et al.: E-diagnosis: Unsupervised and real-time diagnosis of small-window
long-tail latency in large-scale microservice platforms. In: Proceedings of the 2019
World Wide Web Conference on World Wide Web (2019)

22. Shan, H., Wang, Q., Pu, C.: Tail attacks on web applications. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1725–1739. ACM (2017)

23. Shan, H., Wang, Q., Yan, Q.: Very short intermittent DDoS attacks in an unsat-
urated system. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A. (eds.)
SecureComm 2017. LNICST, vol. 238, pp. 45–66. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78813-5 3

24. Sigelman, B.H., et al.: Dapper, a large-scale distributed systems tracing infrastruc-
ture. Technical report, Google, Inc. (2010)

25. Thönes, J.: Microservices. IEEE softw. 32(1), 116 (2015)
26. TIG: JDOS: a kubernetes-based datacenter operating system. https://github.com/

tiglabs/jdos
27. Zhang, S., Shan, H., Wang, Q., Liu, J., Yan, Q., Wei, J.: Tail amplification in n-tier

systems: a study of transient cross-resource contention attacks. In: ICDCS (2019)

https://doi.org/10.1007/978-3-319-78813-5_3
https://doi.org/10.1007/978-3-319-78813-5_3
https://github.com/tiglabs/jdos
https://github.com/tiglabs/jdos

	JCallGraph: Tracing Microservices in Very Large Scale Container Cloud Platforms
	1 Introduction
	2 Microservices in Action at JD.com
	3 Design and Implementation
	3.1 Overview
	3.2 Tracing Microservices via Intruding upon Core Middlewares
	3.3 Low Overhead Tracing
	3.4 Realtime Transfer and Visualization

	4 Evaluation and Experiences
	4.1 Operation Data at JD.com
	4.2 Performance of JCallGraph
	4.3 Use Cases

	5 Related Work
	6 Conclusion
	References




