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Abstract—The increasingly popular fused batch-streaming big data framework, Apache Flink, has many performance-critical as well
as untamed configuration parameters. However, how to tune them for optimal performance has not yet been explored. Machine
learning (ML) has been chosen to tune the configurations for other big data frameworks (e.g., Apache Spark), showing significant
performance improvements. However, it needs a long time to collect a large amount of training data by nature. In this paper, we
propose a guided machine learning (GML) approach to tune the configurations of Flink with significantly shorter time for collecting
training data compared to traditional ML approaches. GML innovates two techniques. First, it leverages generative adversarial
networks (GANSs) to generate a part of training data, reducing the time needed for training data collection. Second, GML guides a ML
algorithm to select configurations that the corresponding performance is higher than the average performance of random
configurations. We evaluate GML on a lab cluster with 4 servers and a real production cluster in an internet company. The results show
that GML significantly outperforms the state-of-the-art, DAC (Datasize-Aware-Configuration) [1] for tuning the configurations of Spark,
with 2.4 x of reduced data collection time but with 30% reduced 99th percentile latency. When GML is used in the internet company, it
reduces the latency by up to 57.8 x, compared to the configurations made by the company.

Index Terms—Big Data Systems, Batch-Stream Fused Processing, Flink, Configuration Optimization, Generative Adversarial

Networks (GAN)

1 INTRODUCTION

PACHE Flink is a distributed processing framework

for stateful computations over unbounded and bounded
data streams. It has been designed to run in all common
cluster environments such as YARN [2] and perform com-
putations at in-memory speed and at any scale [3]. Pro-
cessing of bounded data streams is also known as batch
processing whereas processing of unbounded data streams
is called streaming processing as well. Previously, batch and
streaming processing can only be performed on separated
frameworks (e.g., Apache Hadoop [4] and Spark [5] for
batch processing and Storm [6] for streaming processing).
In contrast, Flink fuses batch and streaming processing in a
single framework, significantly easying the maintenance of
different kinds of big data analysis. Consequently, Flink is
getting increasingly popular.

Most internet giants such as Alibaba, eBay, Netflix, and
Uber are using Flink to build enterprise-level real-time
services [7]. 85% of Flink applications were business intel-
ligence, anomaly detection [8], and real-time recommenda-
tions [9] by the end of 2017, reported by a survey from Data
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Artisan [10]. These enterprise-level applications have two
features. First, an application repeatedly runs on a given
cluster for a long time but with different data. Second, all
the applications require Flink to provide high performance.
In other words, the latency of Flink services needs to be
short whereas their throughput needs to be high.

The performance of an enterprise-level Flink program
can be expressed by:

perf = f(ps,pg,cf,sp) 1)

with per f the latency of a Flink service or the throughput of
a Flink system, ps the physical servers and other hardware,
pg the Flink program, cf the configurations of the Flink
program, and sp the data speed. For a given Flink program
running on a given cluster, ps and pg are fixed. The only
way we can tune for high performance is to tune cf and sp.

For flexibility, Flink has more than 300 configuration
parameters (cf) [11] and some of them are performance-
critical. For example, the Flink configuration parame-
ter taskmanager.memory.fraction specifies the relative
amount of memory that the task manager reserves for
sorting, hash tables, and caching of intermediate results.
Obviously, the value of this parameter significantly affects
the performance of a Flink program.

However, similar to Apache Hadoop and Spark, the
number of performance-critical configuration parameters of
Flink is large and the parameters may interact with each
other in a complex way. This makes simple analytical mod-
els inaccurate for tuning the configuration parameters, let
alone a manual approach. Machine learning based models
have therefore been employed to help tune the configuration
parameters for Hadoop and Spark [1], [12], [13], [14], [15],
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[16], [17], [18], and traditional distributed systems [19], [20].
Although these machine learning based approaches achieve
significant performance improvements, they need a long
time to collect a large amount of training data. For example,
the state-of-the-art, DAC for tuning Spark configurations,
takes two days to collect training data for each Spark pro-
gram [1], hindering it from being widely employed.

In this paper, we propose a guided machine learning
(GML) approach to efficiently auto-tune the configuration
parameters of Flink programs with significantly shorter time
for collecting training data compared to traditional ML ap-
proaches. GML innovates two techniques. First, it leverages
generative adversarial networks (GANSs) to generate a part
of training data to reduce the time needed for collecting
training data from real systems. Second, GML carefully
selects configurations from a number of randomly gener-
ated ones as the inputs of GANs, which the corresponding
performance of the selected configurations is higher than
the average performance (e.g., shorter latency or higher
throughput) corresponding to the random configurations.
As such, GML guides GANs to generate configurations
with better performance, reducing the time for searching
the configuration for optimal performance.

Note that GML is an offline (static) configuation opti-
mization technique for a given Flink program running on a
given cluster. It is designed for a common industry scenario
where a Flink program repeatedly runs for a long time
(e.g., months or years) with different but similar streaming
rates. If a Flink cluster dynamically changes over time,
for example, different servers are added to the cluster, the
program running on the cluster changes from time to time,
or more than one heterogeneous workloads share the same
Flink cluster, we need to re-run GML to find a new optimal
configuration for the new situation, which is tedious. It is
possible to develop an online configuration optimization
technique for Flink systems which can adapt to their dy-
namic changes. But this needs to modify the source code
of the Flink framework substantially. We therefore plan to
work on it in the future.

We employ a lab cluster consisting of 4 servers with
all the 4 Flink programs in HiBench [21], the streaming
benchmark from Yahoo! [22], and a real production cluster
from an internet company with its log analysis service to
evaluate GML. The results show that GML significantly
outperforms the state-of-the-art configuration auto-tuning
approach, DAC for tuning the configurations of Spark pro-
grams, with much shorter time used for collecting training
data and searching the optimal configurations.

In particular, this paper makes the following main con-
tributions:

o We propose an approach to optimize the configura-
tions of Apache Flink with respect to performance.
To our best knowledge, we are the first to study on
the configuration optimization of Flink programs.

o We propose to leverage GANSs to generate a part of
training data for machine learning models used for
configuration optimization and in turn to reduce the
time needed for collecting the training data.

e We guide GAN to select configurations with higher
performance than the average performance of ran-

domly generated configurations as inputs.

e we demonstrate that GML only takes 3 hours to
reduce the 99th percentile latency by 2.2x on average
and up to 3.7x compared to the default configura-
tions. For the batch jobs, if they are configured by
our GML approach, they are 1.5x and 2.9x faster
than they are configured by the DAC approach and
an expert approach, respectively. More importantly,
GML reduces the configuration optimization time by
2.4x compared to DAC.

e We show that GML improves the latency of a Flink
program used for log analysis in a real production
environment by 10.5x on average and up to 57.8x.

The rest of this paper is organized as follows. Section 2
describes the background and motivation. Section 3 depicts
our guided machine learning approach. Section 4 describes
our experimental methodology. Section 5 presents the exper-
imental results and analysis. Section 6 describes the related
work and Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we describe the background and motivation.

2.1 Apache Flink

Apache Flink [23] is an open source framework for
distributed data processing which embraces the Google
dataflow model [24]. It enables users to write programs
that can be distributed over a number of servers (workers),
which makes it possible to process large-scale datasets faster
than a single computer. Unlike other big data frameworks
such as Hadoop and Storm, Flink provides a uniform ar-
chitecture for processing both batch and stream data by
treating them both as streams. Note that although Spark
has streaming processing paradigm as well, it uses micro-
batch to simulate streaming processing, which significant
increases the latency of steaming services.

Figure 1 illustrates an overview of the Flink architecture.
As can be seen, there is a daemon called Job Manager running
on the master node of a Flink cluster. In each worker node,
there is another daemon named Task Manager that manages
the running of all tasks on the node. Each Task Manager
has a memory and I/O manager, a network manager, and
multiple task slots, which are used to manage the memory,
network, and CPU resources, respectively. Moreover, the
Actor Systems serve the communications between the Job
Manager and the Task Managers, between a Flink program
and the Job Manager, and between multiple Task Managers.
If one wants to run a Flink program (job), he/she must
firstly submit it to the Job Manager. The Job Manager then
decomposes the job into a number of tasks and schedules
them to the Task Managers to run.

Internally, Flink represents a job by using directed acyclic
graphs (DAGs) [25]. The nodes of a DAG act as either
sources, sinks, or operators. Source nodes read in or generate
input data whereas sink nodes produce outputs. The inner
vertices of a DAG are operators which execute arbitrary
user-defined functions (UDFs) that consume input from inci-
dent nodes and provide input for adjacent nodes. The DAGs
need to be transformed into more concrete execution graphs
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Fig. 1. Apache Flink Architecture Overview

which contain necessary information for running a job on
a cluster. During the transformation, an input dataset is
generally partitioned into multiple small datasets and each
dataset is processed by a subtask. Note that all the subtasks
execute the same UDF in parallel but with different data.

For flexibility such as running on different cluster man-
agers including Mesos [26], YARN [2], and Kubernetes [27],
Apache Flink provides more than 300 configuration pa-
rameters which specify 33 aspects such as HDFS, core,
Job Manager, and Task Manager [28]. Some configuration
parameters, for example, jobmanager.archive.fs.dir (specifying
the directory where the archive file system of the Job Man-
ager locates in a Flink cluster), do not affect the performance
of a Flink program significantly. However, other configu-
ration parameters such as taskmanager.memory.fraction and
akka.framesize do. taskmanager.memory.fraction specifies the
relative amount of memory that the task manager reserves
for sorting, hash tables, and caching of intermediate results.
Since different programs may need different size of mem-
ory for caching intermediate results, a too small value of
taskmanager.memory.fraction results in a too small memory
buffer for caching the intermediate results and in turn sig-
nificantly reduces the performance. The later (akka.framesize)
specifies the maximum size of messages which are sent be-
tween the Job Manager and the Task Managers. Obviously,
this size significantly affects the network performance. We
call these performance-critical configuration parameters and
focus on tuning them for high performance.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) has become the
most prominent examples of a new class of ML algorithms
which generative models and discriminative models are
simultaneously generated in a competitive setting [29]. The
objective of discriminative models is to correctly label sam-
ples from either the generative models or the training data.
In contrast, the objective of generative models is to deceive
the discriminative models. In other words, the generative
models produce samples that are categorized as training
data by the discriminative models. As such, generative
models can be thought of as a team of counterfeiters while
the discriminative model can be treated as a police trying
to detect the counterfeit currency. This competition drives
both teams to improve their methods until the counterfeits
are indistinguishable from the genuine articles [30].

2.3 Motivation

Apache Flink is a new and unique big data processing
framework which fuses the batch and streaming processing
in one platform. Like other big data frameworks such as
Apache Haddop and Spark, Flink has a larger number
(> 200) of configuration parameters and many of them are
performance-critical. Although a number of researches have
been done for optimizing the configurations of other big
data frameworks such as Hadoop [12], [31], [32], [33] and
Spark [1], optimizing the performance of Flink programs by
tuning the configuration parameters has not been explored,
which is the first motivation of this study.

Moreover, the configuration optimizing researches [1],
[12], [31], [32], [33] for Hadoop and Spark show that
machine learning based approaches [1], [12] are the most
promising solutions compared to analytical model [31], [32]
and statistical reasoning based approaches [33]. However,
the nature of machine learning based approaches needs a
large number of training data, which takes a long time to
collect them. For example, no matter for Hadoop or Spark,
the machine learning based approaches [1], [12] all take one
to two days to collect enough training data from real clusters
to train accurate enough performance models. Although this
can be accepted by users who repeatedly run their big data
programs for a long time, they still ask for approaches with
short time for data collection. We therefore ask a question: Is
it possible to reduce the time for collecting training data but
still achieve the same optimization results for the machine
learning based approaches? This question is the second
motivation of this work.

3 GUIDED MACHINE LEARNING APPROACH

In this section, we describe our guided machine learning
(GML) approach to optimize the configurations of Flink
programs with respect to performance.

3.1

We propose an approach named GML which is designed to
optimize the performance of a Flink program by tuning the
performance-critical configuration parameters. The goal of
GML is to tune the configurations of a Flink program by
using ML techniques but with much shorter time to collect
the training data compared to traditional ML algorithms.
The key idea is to leverage GANs to reduce the time
for training data collection. As Section 2.2 described, the
generative models of GANs finally generate data which
is indistinguishable from the genuine data. We therefore
leverage the generative models of GANSs to generate a part
of training data. During this process, we design a technique
called mean processing to guide GANs to use configurations
with better performance than the mean performance of a set
of random configurations. As such, GANs can capture the
distributions of configurations with high performance.
Figure 2 shows an overview of our GML approach. It
consists of four components: generating, profiling, modeling,
and searching. The generating component generates config-
urations which are used to study the relationship between
configurations and the performance of a Flink program. The
profiling component is used to collect the performance (e.g.,

Overview
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latency or throughput) of a Flink program with a num-
ber of different configurations. The modeling component
leverages a suitable machine learning algorithm to build a
performance model which takes the configuration parame-
ters as inputs and the performance (latency or throughput)
as output. The searching component is used to search the
configuration for a Flink program which can achieve the
optimal performance.

The relationship between the components is as follows.
In step @), the random configuration generator (RCG) ran-
domly generates k configurations (each configuration is
a vector of the configuration parameter values, see Sec-
tion 3.2). The profiling component subsequently runs a Flink
program with the k configurations on a real Flink cluster
and collects the performance (e.g., latency or throughput)
of the program with each configuration, as step @ shows.
Thirdly, GML selectively inputs the configurations which
their corresponding performance is higher than the mean
performance of the k configurations to the GAN-based
configuration generator (GCG), as shown in step 3. This is
what we call mean processing. Note that it is extremely impor-
tant to determine a suitable k& yet notoriously challenging.
Larger k increases the time needed for profiling whereas
smaller k may make that the randomly generated configu-
rations failed to represent the real case. We determine the
suitable £ in Section 5.1.

Next, GCG generates p configurations which capture
the distribution of the ones with high performance from
the £ randomly generated configurations, as the step @
shows. Subsequently, the profiling component collects the
performance for these p configurations. Note that the step
@,0), and @ may repeat a number of times, leading to
configurations with higher and higher performance. After
we get enough profiling data, the modeling component uses
them as training data to train performance models by using
machining learning algorithms, as shown in step ). Finally,
the performance model is used by the searching component
to search the configuration for a Flink program which can
achieve the optimal performance, as the step (6 shows. Note
that ©) and (6) may also repeat a number of times, aiming to
find the optimal performance.

One may think that it is unnecessary to build perfor-
mance models because we can know the performance of a
program with a certain configuration by running the pro-
gram with that configuration when we search the optimal
configuration for the program. However, depending on a

4

Flink program, running it with a certain configuration on a
real cluster may take several to tens of seconds. Moreover,
searching the optimal configuration for a program typically
needs a large number (e.g., 10,000) of real program execu-
tions in this case, resulting in a very long time for finding
the optimal configuration for the program. If we have a
performance model, knowing the performance for a Flink
program with a certain configuration only takes several
milliseconds, which is much faster than running the real
program. The only problem is how to build a performance
model with high accuracy, which is the focus of this study.

3.2 Generating Configurations

As shown in Figure 2, the generating component of GML
consists of two configuration generators: random config-
uration generator (RCG) and GANSs-based configuration
generator (GCG). RCG randomly generates a value for each
configuration parameter in its corresponding value range
while GCG tries to generate a value for each configuration
parameter to mimic the value distribution of the GANSs’
input configurations. When we run a Flink program, we
need to set the value of each parameter, which can be done
by either RCG or GCG.

We use the following vector to represent a configuration:

COTLfi = {6“767;2, ...,Cij, ...,Cin}7i = ]., ey M (2)

with conf; the ith configuration and c;; the value of the
j'" configuration parameter in the ' configuration; n is
the number of configuration parameters of Flink that can be
easily adjusted and significantly affect performance. In this
study, we consider 27 performance-critical configuration
parameters (shown in Table 2). m is the number of different
configurations. Note that as long as two values of at least
one parameter of two configurations are different, we treat
them as two different configurations.

To observe how the performance-critical configuration
parameter affect the performance of a Flink program, we
execute each Flink program a number of times and each
execution with a different configuration. Therefore, m con-
figurations correspond to m executions.

3.3 Profiling Performance

For each configuration generated by the generating compo-
nent, we execute a Flink program with the configuration
in a Flink cluster and collect the 99th percentile latency
and throughput. Then we construct the following execution
vector for each Flink program as a profiling data item:

pv; = {perfi,confi,dspeed;},i =1,...,m 3)

with pv; the vector of the it" execution, perf; the 99th
percentile latency or the throughput of the " execution,
conf; the configuration for the it" execution, and dspeed;
(in bytes/s) the input data speed for the i*" execution.
Now each vector pv; contains a specific configuration
and its corresponding performance. m such vectors for a
Flink program form a matrix which is used as the training
data set in the ML-based configuration auto-tuning tech-
niques. Generally, m must be large enough for building
accurate performance models (e.g., model error < 10%)
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and different programs may need different values of m
for accurate performance models. Since one execution of a
program can only obtain one vector pv;, larger m causes
more executions of the program and in turn longer profiling
time. The goal of this study is to reduce the amount of the
profiling data to decrease the time needed for training data
collection but keep the same model accuracy.

3.4 Modeling Performance

To efficiently tune the configurations for Flink programs,
we need to build performance models as described in Sec-
tion 3.1. We can build a performance model for a single
Flink program or a group of Flink programs but with more
challenges. In this study, we build the model for a single
program as follows.

perf = f(c1,cay ...y ¢, ..., Cor, dspeed) (4)

with per f the performance, ¢; the value of the ith configura-
tion parameter, and dspeed the input data speed (bytes/s).

Since the number of input parameters is 28 which is
large for modeling, it is very difficult to build accurate
models by using analytical and statistic reasoning based
approaches [1]. We therefore use ML algorithms to construct
performance models for Flink programs. However, there are
so many different ML algorithms. Which one is a good fit in
our case? It is challenging to answer this question because
there are no theory guidelines.

We therefore explore the ML algorithms for Flink config-
uration auto-tuning by experiments. The goal is to identify
an algorithm that can build accurate performance models
but with an as small as possible amount of training data.
The challenge is that the amount of training data needs
to be balanced: a large number of training data increases
profiling and training time, whereas a small amount of
training data may not enable accurate performance models.
In particular, long profiling and training time significantly

limits the performance improvement of a Flink program.
We tried five different standard ML algorithms: Sup-
ported Vector Machine (SVM), Artificial Neural Network
(ANN), Gaussian Process (GP), Random Forests (RF), and
Stochastic Gradient Boosted Regression Tree (SGBRT). We
also tried one ML algorithm named hierarchical modeling
(HM) customized for Apache Spark configuration optimiza-
tion by the DAC paper [1]. We apply the total six algorithms
on the same set of training data to construct six performance
models and compare their accuracy which is calculated by:

B i |pre; — act;|
err = (Z e )/n x 100%
i=1

with pre; the performance predicted by the models for a
given Flink application, act; the actual performance of that
application, and # the total number of testing set. Note that n
is a quarter of the training set and there is no overlap between
the training set and the testing set.

Figure 3 shows the errors of the models built by the six
algorithms. The T60 along the X-axis means the training
set consists of 60 vectors and the same applies to T120,
T180, and so on. As can be seen, the accuracies of the
models generally improve when the amount of training data
increases. When the training set size achieves 300, the errors
of all models are less than 10%. In particular, the errors of

5

the models built by SGBRT and HM can be less than 10%
when the training set size is 240 while others can not. This
indicates that models built by SGBRT and HM can achieve
high accuracy with relatively less amount of training data
compared to the other four ML algorithms. However, the
errors of the models built by HM are all higher than those
built by SGBRT, as shown in Figure 3. We therefore employ
SGBRT in our Flink configuration auto-tuning study.

50%
40%
30%
5 20% [
10% [
0%

B SGBRT [ SVM £ ANN [ GP £ RF & HM

EEIWE% NN

T180 T240 T300 T360

Fig. 3. The errors of the performance models constructed by Stochastic
gradient boosted regression tree (SGBRT), Supported Vector Machine
(SVM), Artificial Neural Network (ANN), Gaussian Process (GP), Ran-
dom Forests (RF), and Hierarchical Modeling (HM) with different sizes
of training sets. T60 means training set consists of 60 vectors defined
by equation (3).

3.5 Searching Optimal Configuration

By far, we still do not know the optimal configuration
parameter values for a given Flink application. To address
this issue, we need an automatic searching approach. There
are many algorithms that can be used to search a complex
solution space such as recursive random search (RSS) [34],
tabu search (TAS) [35], and Genetic Algorithms (GA [36].
RSS can easily stuck in local optima and TAS typically suf-
fers from the local convergence rate and the initial solution
space. GA is an evolutionary algorithm inspired by evolu-
tionary biology such as inheritance, mutation, selection, and
crossover, which is robust against local optima. Our goal is
to find a Flink program-input pair from the global space of
parameters, which is a complex space to explore with many
local optima. We therefore choose GA in this study.

Figure 4 shows the workflow of our searching compo-
nent. In step ®, we input a set of initial configurations
to the performance model of a Flink program, and the
performance model outputs a perf which can be either 99th
percentile latency or throughput. Note that initial configura-
tions consist of two parts: 50% of the configurations are gen-
erated by GANs and the other 50% are generated randomly,
which is significantly different from previous configuration
auto-tuning approaches where the initial configurations for
the GA are all randomly generated. This optimizes the
quality of the initial population (configurations) of the GA,
guiding it to speed up the search for optimum configu-
rations. The reason is that if all the initial configurations
are randomly generated, the GA starts to search optimal
configuration in a random direction, leading to a long
time to find the optimal configuration. In contrast, if some
initial configurations are randomly generated and others are
generated by GANs with corresponding high performance,
the search direction of the GA would be quickly guided
to a direction where the configurations correspond to high
performance, leading to a short time to identify the optimal
configuration. We verify this assertion in Section 5.3.

In addition, since our performance model is built by a
ML algorithm — SGBRT, we can quantify the importance of
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the configuration parameters with respect to performance
when building the model. Subsequently, we leverage the
configuration parameter importance to guide the mutation
operation of the GA. Concretely, we use the importance of
the configuration parameters as the mutation probability
and guides the GA to make mutation only occur on the
important configuration parameters. In other words, this
makes GA avoid performing the mutation operations on
parameters that do not influence performance significantly,
shortening the time used to find the optimum configuration
parameter values. We will show the important configuration
parameters of the experimented programs in Section 5.4.

In step @, we pass configuration parameter values,
the corresponding performance predicted by performance
model, and the importance of the configuration parameters
to the GA. Subsequently, the GA performs a number of
operations such as crossover and mutate on the configuration
parameter values, as shown in step @. In step @, these
configuration parameter values obtained by the GA are
passed to the performance model as inputs to get a pre-
dicted performance. Next, the new configuration parameter
values and the corresponding performance perf are passed
to the GA again. The step @ to @ might be repeated for a
number of times until the optimum configuration is found.
In other words, if we find the performance produced by
three configurations continuously generated by the GA can
not be higher anymore, we stop the searching of GA, and
treat one of the configurations as the optimal configuration.

4 EXPERIMENTAL SETUP

In this section, we describe our experimental methodology.

4.1 Lab Cluster Platform

Our lab experimental cluster platform consists of 4 Linux
servers. One serves as the master node which runs the Job
Manager and the other three serve as slave nodes which
execute the Task Managers. Each server is equipped with
an Intel(R) Xeon(R) CPU E5-2407 2.20GHz 4-core processor
and 32 GB DRAM. The OS of each node is SUSE Linux
Enterprise Server 11. As for the Flink framework, we use
Flink 1.4.2 which is a stable version.

To generate data streams, we employ a Kafka cluster [37].
Figure 5 shows the workflow of a typical Kafka and Flink
cluster. Kafka firstly converts data stream from transactions,
log, IoT (Internet of Things), and etc. into Kafka stream.
The Flink program subsequently processes the Kafka stream

6
Tra nsaction§l
Logs = Other
10T §3 Kafka . @ank > Stor.age
E— devices

Fig. 5. The coordination between a Kafka cluster and a Flink cluster.

TABLE 1
Experimented applications in this study.

Benchmark suite Application Abbr.
FixWindow FW

WordCount WC

Hibench Repartition RP
Identity 1D
Yahoo Streaming benchmark | advertisement AD

and outputs the results to the Kafka cluster, or other storage
devices, or other applications. In our experiments, our Kafka
cluster consists of 4 servers and the Flink cluster has the
same number of servers.

4.2 Benchmarks

We select all the programs from the Flink version of Hi-
Bench and a program from Yahoo! — the advertisement pro-
gram [38] as our experimental programs, shown in Table 1.
The Yahoo! Streaming Benchmark is widely used in industry
to evaluate streaming systems. It is a simple advertisement
application which attempts to probe some common oper-
ations performed on data streams like window operations
and checkpoints.

The Flink version of HiBench contains four programs:
FixWindow, WordCount, Repartition, and Identity. FixWindow
is a window-based aggregation which evaluates the win-
dow operations in the stream frameworks. WordCount tests
the performance of the stateful operators and the cost of
checkpoints/Ackers. Repartition evaluates the shuffle effi-
ciency and Identity tests the read/write efficiency of an
external input source represented by a kafka cluster.

4.3 Real Production Cluster

We also evaluate GML in a real production cluster from
a large retailer in China. In this experiment, we use two
docker containers as Job Managers and 10 docker containers
as Task Managers. The docker containers (virtual machines)
are managed by a customized version of Kubernetes [27].
Each container is equipped with 4 CPU cores (Intel(R)
Xeon(R) CPU E5-2698 v3 @ 2.30GHz), 8 GB memory, and
10 GB/s ethernet network. All the containers share a net-
work disk which is 100 GB. The OS is Centos 7 with
Linux kernel 3.10.0-327.28.3.el7.x86_64 and the Apache Flink
version is 1.4.

In this experiment, we run a type of real-time log anal-
ysis program written in Apache Flink. Its main function is
to process the log data, to extract the execution time of each
request from the log, to aggregate execute time from the
raw data, and to calculate the percentile response time of
each type of requests. We require the program can get the
analysis results within 5 seconds since the program is a key
component of the monitoring and alarm system. In addition,
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TABLE 2
The 27 Flink configuration parameters. (jm - jobmanager, tm - taskmanager.)

Configuration Parameters-Description [ Abbr. [ Range [ Defaut
parallelism.default-The default parallelism for programs. PD 1-24 1
tm.numberOfTaskSlots - The number of parallel tm operators. slot 1-8 1
jm.heap.mb - JVM heap size (MB) for jm. JH 1024-4096 1024
tm.heap.mb - JVM heap size (MB) for tm. TH 1024-10240 1024
tm.memory.fraction - The relative amount of tm reserved memory. MEMF 0.5-0.8 0.7
tm.memory.segment-size - The buffer size for mem & network stack(B). SEGS 32KB - 4M 32KB
tm.runtime.hashjoin-bloom-filters - en/disable filters. RTHS false, true false
tm.runtime.sort-spilling-threshold - spilling threshold. RTTH 0.6-0.9 0.8
tm.runtime.max-fan - The max fan-in for external merge joins and fan-out for spilling hash | RTMF 120 - 200 128
tables.

tm.network.memory.fraction - JVM mem fraction for network buffers. NTMF 0.1-0.6 0.1
tm.net.num-arenas - the number of Netty arenas. NTNA 1-8 #slot
tm.net.server.numThreads - The number of Netty server thread. NTST 1-8 #slot
tm.net.client.numThreads - The number of Netty client threads. NTCT 1-8 #slot
blob.fetch.num-concurrent - The number concurrent BLOB fetches (e.g., JAR file down- | BONC 40 - 100 50
loads) that the jm serves.

blob.fetch.retries - The number of retries for the tm to download BLOBs (such as JAR files) | BOFR 40 - 100 50
from the jm.

akka.framesize - Max size of messages sent between the jm and tm. AKFS 6M - 20M 10M
akka.watch.threshold - Threshold for DeathWatch failure detector. AKWT 4-22 12
tm.network.memory.min - Min memory size for network buffers (B). NTMI 64M - 256M 64M
tm.network.memory.max - Min memory size for network buffers (B). NTMA 1024M - 2048M 1024M
tm.net.sendReceiveBufferSize - The Netty send and receive bulffer size. NTBS 763659- 1527317 system bulffer sizes
blob.fetch.backlog - The max number of queued BLOB fetches (such as JAR file downloads) | BOBL 900 - 2000 1000
that the jm allows.

jm.tdd.offload.minsize - Max size of the TaskDeploymentDescriptor’s serialized task and | JMTO 900 - 4096 1024
job information to transmit them via RPC.

fs.overwrite-files - Specifies whether file output writers should overwrite existing files by | FSOF false, true false
default.

fs.output.always-create-directory - File writers running with a parallelism larger than one | FSOO false, true false
create a directory for the output file path and put the different result files (one per parallel

writer task) into that directory.

compiler.delimited-informat.max-line-samples - The max number of line samples taken | CMAS 9-20 10
by the compiler for delimited inputs.

compiler.delimited-informat.min-line-samples - The min number of line samples taken by | CMIS 2-8 2

the compiler for delimited inputs.

compiler.delimited-informat.max-sample-len - The max length of a line sample that the | CMASL 1M - 10M 2M
compiler takes for delimited inputs.

we require the monitor system can capture the exceptions
within seconds.

4.4 Configuration Parameters

As discussed earlier, we choose a wide range of Flink config-
uration parameters that significantly influence performance,
including memory management, execution behavior, networking,
parallelism, and etc. Table 2 lists the 27 parameters experi-
mented in this study.

The last column of Table 2 provides the default values of
the parameters which are recommended by the Flink team
and can be found at [11]. The third column shows the value
range of each configuration parameter. This information is
however not provided by the Flink team, and we therefore
conducted experiments to determine the value range for
each parameter. Note that the value ranges of these configu-
ration parameters might be different for different clusters
because some value ranges depend on cluster hardware
configurations such as memory size.

4.5 Data Speed Paramemters

The data speed sp for the Flink benchmarks in HiBench
can be tuned by four parameters shown in Table 3. We
employ recordsPerSecond to represent sp and it is calculated
as follows.

recordsPerInterval * 1000 * producer Number 5)
S =
P interval Span

In our experiment, we tune sp by changing the value
of recordsPerInterval while keeping other parameters un-
changed. Through this way, we can observe how the data
speed affects the performance of a Flink program. Note that
the unit of sp represented by Equation ( 5) is records/s and
it can be converted to mega-byte/s by using recordLength.

5 RESULTS AND ANALYSIS

In this section, we first determine several parameters of
GML. We then present the experimental results and analysis.

5.1 Determining the Parameter & of GML

As described in Section 3.1, it is important to determine a
suitable k£ which specifies the number of randomly gener-
ated configurations. They are used as the basis of the GANs
to generate more configurations as training data to train
performance models. We conduct the following experiments
to determine k. First, we run a Flink program 150 times, each
with a randomly generated configuration and we call this
one experiment. We observe which time the configuration
with the highest performance in the experiment (the 150
runs) occurs. Second, we perform the experiment 100 times
for each Flink program.

Figure 6 shows the experiment results for benchmark
WC'. Each dot in the figure represents the configuration
with the highest performance in one experiment. As can be
seen, in 87% of the experiments, the configuration with the
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TABLE 3
Parameters used to tune the data speed of a Flink program.

Parameters Short Name value Description
hibench.streambench.datagen.recordsPerInterval | recordsPerInterval 5 number of records to generate per interval span (default:5)
hibench.streambench.datagen.producerNumber producerNumber 3 Number of KafkaProducer running on different thread (default:1)

hibench.streambench.datagen.intervalSpan intervalSpan 30 Interval span in millisecond (default: 50)
hibench.streambench.datagen.recordLength recordLength 200 fixed length of record (default: 200 bytes)
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Fig. 6. Observing which time the configuration with the highest perfor-
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Fig. 7. The residual differences between guided configurations and
random configurations for programs ID and W C.(a) The program 1D
with guided configurations. (b) The program I D with random configura-
tions.(c) The program W C' with guided configurations. (d) The program
W C with random configurations.

highest performance is generated before the 100" round.
This indicates that it is highly possible to generate configu-
rations with high performance in 100 randomly generated
configurations. We observe the similar results for other
experimented programs and we therefore set £ to 100 for
our GML approach.

5.2 Accuracy of the Performance Models

As aforementioned, we design mean processing to select
configurations from 100 randomly generated configurations
for GANs to generate more configurations. We put the 100
randomly generated configurations and the ones generated
by GANs together to train performance models. Before

Fig. 8. The 99th percentile latency variation with the iteration numbers of
the GA and different mixtures of configurations generated by RCG and
GCG. For the (XX-YY) style legend, XX represents how the training data
set used to train a performance model is generated and YY denotes how
the initial data set of the GA is generated. For example, (GCG+RCG)-
(GCG+RCG) means that a part of the training data is generated by
GANSs (GCG) and the others are generated randomly (RCG), and a part
of the initial configurations of the GA is generated by GANs (GCG) and
the others are generated randomly (RCG).

we evaluate the model accuracy, we define two concepts:
guided configuration ( a configuration generated by GAN)
and random configuration. To evaluate the accuracy of the
performance model with different types of configurations,
we collect 100 guided configurations and 100 random con-
figurations, which are different from the training data. We
input these 200 configurations to the performance model
to predict the performance of five programs. We leverage
residual plot to observe the accuracy of the performance
models. That is, the accuracy is represented by the residual
difference between the performance predicted by the per-
formance model and that obtained by real measurement.

Figure 7 shows plots produced by 100 real performance
measurements and 100 performance predictions by GML for
programs ID and WC for 100 guided configurations and
100 random configurations. The X-axis represents the pre-
dicted performance values, and the Y-axis denotes the resid-
uals. These figures clearly show that the models are accurate
across the guided Flink configuration space and relatively
inaccurate to the random Flink configuration space: all data
points for each application are randomly located around the
horizontal line of y=0, and the more accurate class has closer
distance to the y=0, indicating that the performance model
has a good orientation to guided configurations. For other
programs, we also observe the similar results. Note that the
more accurate performance models, the higher performance
we can achieve by GML.

5.3 Why Mixed Configurations?

In Section 3.5, we analyzed that using a mixture of 50%
of configurations generated by RCG and 50% of configura-
tions generated by GCG as the initial data of GA is better
than using configurations only generated by RCG. We now
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Fig. 9. The importance of the configuration parameters with respect to
performance for the five Flink programs.

verify this assertion by experiments. Figure 8 shows how
the 99th percentile latency (p99_latency) varies with the
iteration numbers of the GA and the different mixtures of
configurations generated by RCG and GCG as the initial
configurations of the GA. For the (XX-YY) style legend in
the figure, XX represents how the training data set used
to train a performance model is generated and YY denotes
how the initial data set of the GA is generated. For example,
(GCG+RCG)-(GCG+RCG) means that a part of the training
data is generated by GANs (GCG) and the others are gener-
ated randomly (RCG), and a part of the initial configurations
of the GA is generated by GANs (GCG) and the others are
generated randomly (RCG).

There are a couple of interesting observations to be made
here. For one, if all the training data and all the initial
configurations for the GA are only generated by RCG (the
RCG-RCG curve), the GA takes the longest time (e.g., 90
iterations) to converge and the 99th percentile latency is
the longest among all the approaches (curves) shown in
Figure 8 (case A). Second, if we use the opposite extreme
case (GCG+RCG)-(GCG+RCG), the GA takes the shortest
time (e.g., 60 iterations) to converge and the 99th percentile
latency is the shortest among all the approaches (case B).
The GA convergence rates and 99th percentile latencies of
other cases are in the ranges of those of the case A and
case B. These results confirm our assertion that a mixture
of configurations generated by RCG and the ones generated
by GCG can speed up the searching process for the optimal
configuration.

5.4 Configuration Parameter Importance

As a call-and-response for Section 3.5, Figure 9 shows the
importance quantification of the configuration parameters
for the five experimented Flink programs. Because of the
limited space, we only show the six most important configu-
ration parameters for each program. As can be seen, the im-
portance quantification of the configuration parameters for
a single Flink program are significantly different. Moreover,
the importance ranks of different programs are different.
This indicates that it is possible for the GA to speed up
the search process if it makes the mutation operations only
occur on the important configuration parameters. In other
words, traditional GA mutates the configuration parameters
randomly, which may waste time if the mutation occurs on
the unimportant parameters with respect to performance.

5.5 Configurations Generated by GANs

The main purpose of the generative models of GANSs is to
generate configurations that conform with the distribution

Fig. 10. The kiviat Plot represents the simulation generation capability
of the generated model.(a) the real configurations. (b), (c), and (d) are
the configurations generated by GANs.

of real configurations. We compare the distribution differ-
ence between the real configuration and generated ones
using kiviat plots. Before drawing the plot, we normalize
the data as fellows:
Xpor = Ti — Tmin

Tmaz — Tmin
with X, the normalized value of the i configuration
parameter, z; the value of the ith configuration parameter,
Tmae aNd Topin the maximum and minimum values of the
ith configuration parameter, respectively.

Figure 10 shows the simulation generation capability
of the generated model. (a) shows the kiviat plot of real
configurations. (b), (c), and (d) show the configurations
generated by the generative model of the GANs. As we
can see, the shapes of (b) to (d) are quite similar to that
of (a). This indicates that the GANs can capture the real
configuration distribution well. The results can be seen in
other experiments as well.

5.6 Iteration Number of the GA

We employ GA to iteratively search the huge configura-
tion space to find the optimum configuration for a Flink
program. The time (or the number of iterations) needed
for convergence is our primary concern because longer
time incurs higher cost to find the optimal configuration.
Figure 11 shows how GA converges for all the experimented
programs. We see that, a small number of Iterations, e.g. 20
to 50, are typically enough. Moreover, different programs
may need different numbers of iterations. For example,
WC, FW, and ID need 24, 40, and 32 iterations to find
the optimal configurations, respectively. This indicates that
the combination of our proposed techniques such as the
mixture of configurations generated by RCG and GCG, and
the performance models can indeed speed up the search
process for the optimal configuration for a Flink program.
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Fig. 11. The number of iterations for all programs, Advertisement(AD),
Repartition(RP), Identity(ID), FixWindow(FW), WordCount(WC).

5.7 Speedup

We now evaluate the overall speedup obtained by the GML
generated configurations over the default configuration
parameter values and the state-of-the-art approach, DAC,
generated configurations. For a fair play, we re-implement
the DAC in our experimental environment. We define the
speedup as fellows:

Speedup = perf /per fmeth (6)

with per fietn the performance of an application with con-
figurations generated by GML or DAC, and perf the perfor-
mance with default configurations. The goal of comparing
GML with DAC is to show whether GML outperforms
the state-of-the-art approach for tuning configurations of
big data systems. In addition, since thus far we have not
found studies focusing on tuning the configurations of Flink
programs, we also compare the configuration of a Flink
program tuned by GML against its default configuration
to let readers have an initial experience about how much
performance improments can be obtained.

As aforementioned, latency and throughput are impor-
tant performance metrics in stream processing systems. In
general, when latency improves, the throughtput decreases,
and vice versa. Thus, we consider throughput, p99_latency,
and ratio of the two as the optimization metrics.

Figure 12 shows the speedups of 20 program-input pairs
with the GML generated configurations over the default
configurations and the DAC generated configurations. As
shown in Figure 12(a), taking the ratio of throughput over
p99_latency (higher is better) as the optimization metric,
GML improves the ratios of the 20 programs-input pairs
with default configurations by a factor of 2.2x on average
and up to 3.7x. The minimum and maximum speedups of
GML over DAC are 1.2x and 2.9 %, respectively. On average,
the speedup achieves 1.5x.

Figure 12(b) and Figure 12(c) are the speedups with
GML over DAC and default configurations for considering
throughput and p99_latency as optimization metrics. As can
be seen, GML can improve the throughput, compared to
default configurations by a factor of 1.3x on average and
up to 2.4x. Moreover, GML outperforms DAC by a factor
of 1.13x on average. As for the p99_latency, the average
and maximum improvements of GML arel.7x and 2.3 x,
respectively, In addition, GML improves the p99_latency
over DAC by a factor of 1.3x on average.

10

5.7.1 Discussion about Streaming Rate

For Flink programs, streaming rate significantly affects the
program performance (e.g., tail latency or throughput). The-
oretically, when the streaming rate changes, the optimal con-
figuration of the program should be changed. This indicates
that we should collect new profiling data to find a new
optimal configuration for the program. However, practically
this depends on how much the streaming rate changes. In
our experiments, we observe that if the streaming rate vari-
ation is within [-15%, 15%] of a given rate which has been
used to optimize performance based on a set of profiling
data, it is unnecessary to re-collect new profiling data for
a different streaming rate. In other words, the optimized
configuration obtained by using the given streaming rate
can be also the optimal one for other different streaming
rates as long as they are in the range from “the given rate
— given rate * 15%"” to "the given rate + given rate * 15%"” in
our case. Nevertheless, if a different streaming rate is out
of the range, we must collect new profiling data, incurring
additional overhead. Fortunately, we find that one usually
limits the streaming rate within a predefined range based
on experience in industry, rather than lets it change wildly.
In such a case, our approach can be easily used.

To observe how streaming rate affects performance of
a Flink program, we have tried four significantly differ-
ent rates:1,000,000 event/s, 2,000,000 events/s, 4,000,000
events/s, and 5,000,000 events/, and the results are shown
in Figures 12 (a), (b), and (c). As can be seen, the per-
formance improvements (e.g., tail latency, throughput, and
throughput/latency) achieved by GML are different for
significantly different streaming rates for all the experi-
mented Flink programs. For example, GML only improves
the throughput of Repartition by 4.8% when the streaming
rate is 2,000,000 events/s while it improves that by 61.8%
when the rate is 4,000,000 events/s. This indicates that
we indeed need to collect new profiling data to find new
optimal configruation for a Flink program for significantly
different streaming rates.

5.8 Overhead

We now report the overhead of GML including the time
used to collect training data, to train models, and to search
optimal configurations. Table 4 shows the results. The unit
for the time used for collecting data is hour, for model
training is second, and for searching optimal configuration
is minute. As can be seen, collecting data incurs the highest
cost, 83.3 hours for GML while DAC needs 383.5 hours. The
time needed by GML is shortened by 2.4x compared to
DAC! While it still seems long, it is a one-time cost and
is still attractive compared to manually configuration. It
is important to remember that the targets of GML are the
stream processing applications which usually run in data
centers for months or even longer. In this usage scenario,
this high one-time cost is amortized with a very large
number of runs. So, the additional cost per run is very low.

5.9 Results for the Real Production Cluster

Since it is difficult to get the throughput of the whole cluster
in the company, we only show the results for p99_latency
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Fig. 12. Speedup for all programs WordCount(WC), FixWindow(FW), RePartition(RP), Identity(ID), Advertisement(AD) with GML generated
configurations over with default configurations and DAC generated configurations . The T1,..,T4 of each program correspond to the input data
speed from listed from 1,000,000 events/s, 2,000,000 events/s, 4,000,000 events/s, and 5,000,000 events/s. (a), (b), and (c) compare the ratio of

throughput and p99_latency, throughput, and p99_latency, respectively.

TABLE 4
Time Cost

Methodology | Collecting(h) | Modeling(s) | Searching(m)

GML | 833 [ o [ i5
DAC | 2835 | 23 [ 9
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Fig. 13. The Model Accuracy for the real production cluster.

optimization. However, when we employ GML in a real
production environment, we encounter a problem. It is dif-
ficult to build an accurate performance (p99_latency) model
by using the SGBRT algorithm with a limited amount of
training data even when we generate some data by using
GANSs. We have to try other ML algorithms and find the one,
the HM model, proposed by DAC [1] is accurate enough
when the number of training examples achieves 480 (e.g.,

the error < 10%), as Figure 13 shows. We therefore choose
the HM as the modeling technique for the real production
environment while keep other parts of GML unchanged.

One may ask the reason why SGBRT works well for the
lab cluster but not for the real production cluster. Generally,
this is because of the data-dependent nature of machine
learning. That is, a machine learning algorithm works well
in one scenario may not work well in another scenario
because the data being processed is changed. To further un-
derstand how the data is different. We conduct experiments
to investigate the distribution of 99th percentile latencies
produced by the lab cluster and the real production cluster.
We employ kernel density estimation (KDE) [39] to observe
the distribution of 99th percentile latencies. KDE is a really
useful statistical tool to visualize the “shape” of data [39].
We use Gaussian (normal) function as the kernel function of
KDE in this study.

Figure 14 shows the 99th percentil latency distribution
of the lab cluster and Figure 15 shows that for the real pro-
duction cluster. The X axes of the two figures represent the
99th percentile latency in millisecond and the Y axes denote
the KDE of the 99th percentile latency. The calculation of
KDE can be found in [39]. We observe that the distribution
of 99th percentile latency of the lab experiments is similar
to Gaussian distribution while that of the real production
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Fig. 14. The data distribution of 99th percentail latency observed on the
lab cluster.The X axis represents the 99th percentile latency with a unit
of millisecond. The Y axis denotes the kernel density estimation (KDE)
of the 99th percentile latency.
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Fig. 15. The data distribution of 99th percentail latency observed on
the real production cluster.The X axis represents the 99th percentile
latency with a unit of millisecond. The Y axis denotes the kernel density
estimation (KDE) of the 99th percentile latency.

experiments is similar to a long tail distribution. SGBRT is
a stage-wise boosted decision tree, which is good to build
models for data obeying Gaussian distribution but sensitive
to outliers [40]. HM is an ensemble of traditional ensemble
machine learning algorithms (e.g., SGBRT, random forest),
which is more robust when building models for data obey-
ing non-Gaussian distribution such as long-tail distribution
with more outliers. We therefore choose HM for GML used
in the real production cluster.

We compare the 99th percentile latency of the production
Flink program configured by GML, by performance experts
in the company, and by default configurations. In our exper-
iments, GML finds two optimized configurations denoted
by confl and conf2. For the confl, GML improves the
p99_latency over the configuration made by the company
by 3.7x on average and up to 20.4x. Compared to the de-
fault configurations, the conf1 provided by GML improves
the p99_latency by 10.5x on average and up to 57.8X.
Compared to the configuration made by the experts in the
company, the the conf2 provided by GML improves the
p99_latency by 4x on average and up to 16.8x. In addition,
the the conf2 provided by GML improves the p99_latency
over the default configurations by 11.5x on average and up
to 47.7x.

These results show that GML can be used in industry.
However, the performance improvements on real produc-
tion cluster do not show scientific achievements, which
is not our aim either. We perform this comparison with
two goals. First, the significant performance improvements
acheived by GML on a real production cluster shows that
GML can be used in signficantly different hardware environ-
ments and in turn has good adapatability. Second, the per-
formance of the Flink program in the real production cluster
has already been manually optimized by the performance
experts in the company. The performance improvements
made by GML demonstrates that GML outperforms the
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Fig. 16. The speedup of the 99th percentail latency of the "WordCount”
observed on different scales of clusters. The X axis represents the
number of ARM CPU cores.

manual tuning approach used by performance experts in
the practice of performance optimization.

5.10 Scalability

We now evauate the scalability of GML with respect to com-
pute nodes by using mobile ARM processors because we do
not have many standard servers. We create five mobile ARM
clusters consisting of 2,3,4,5,and 6 ARM mobile processors.
Each processor acts as a compute node and all the processors
are connected by a 100MB/s ethernet network. Moreover,
each processor has four little CPU cores, two big CPU cores,
and 4GB memory. Hence, the five clusters consist of 12, 18,
24, 30, and 36 CPU cores, respectively.

Figure 16 shows the speedup of the 99th percentile
latency of program WordCount tuned by GML over that
by the default configurations. As can be seen, the speedup
increases along with the incresing number of CPU cores. In
the clusters consisting of 12, 18, 24, 30, and 36 CPU cores,
GML accelerates WordCount over the default configuration
by 1.48%,1.54%,1.99x%, 2.16x, and 2.46 X, respectively. This
indicates that GML has a good scalability with respect to the
number of CPU cores.

5.11

Our previous evalutions are all on homogeneous clusters.
It would be interesting to know how GML performs on
heterogeneous clusters. We therefore conduct an experiment
to observe the 99th percentile latency of Flink programs
on a cluster consisting of two servers equipped with X86
CPUs and two servers equipped with ARM CPUs. Figure 17
shows that the 99th percentile latencies of the experimented
program-input pairs tuned by GML are signficantly shorter
than those achieved by the default configurations on this
deeply heterogenous cluster. The speedup achieved by GML
over default configurations is 2.2x on average and up to
4.1x in this case. This indicates that GML can also adapt to
heterogeneous clusters (hardware).

Improvments on a Heterogeneous Cluster

6 RELATED WORK

Although there is no study having been done to tune the
configurations for Flink program, a large class of related
studies attempt to optimize the configurations of MapRe-
duce/Hadoop applications. Herodotou et al. did a com-
prehensive survey about the configuration optimization of
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Fig. 17. The 99th percentail latency of Flink programs on a hetero-
geneous cluster.The X axis represents the program-input pairs. RP —
Repartition, ID — Identity, WC - WordCount. 10K — 10,000 records/s,
50K — 50,000 records/s, and so on. These are the input data speed of
Flink programs. def indicates the default configuration.

these big data systems [41]. They classify existing meth-
ods into six categories including rule-based, cost model-
ing, simulation-based, experiment-driven, machine learn-
ing, and adaptive approaches. Interested readers can read
this paper for a comprehensive understanding about the
parameter tuning of big data systems. We therefore do not
repeat the related studies in this paper.

We instead describe the related work from the modelling
approach perspective. Herodotou et al. [31], [32], [42] pro-
pose to build analytical performance models first and then
leverage genetic algorithm to search the optimum configura-
tions for Hadoop workloads. Adem et al. [33] suggest using
a statistic reasoning technique named response surface (RS)
to construct performance models for MapReduce/Hadoop
programs and then implement the models in a MapRe-
duce simulator. Zd.Bei et al. [12] propose a random forest
based approach to automatically tune the configurations of
Hadoop programs. These studies work well for Hadoop
programs but not Spark. Therefore, Xuehai et al. propose
a hierarchical model to build the performance model for
Spark programs and in turn to tune the configurations of
them [1]. Their work shows significant performance im-
provement for the Spark programs. In summary, the above
mentioned approaches all use machine learning or statistic
reasoning algorithms which need a large amount of training
data by nature. Our approach is different from them, which
aims to reduce the time needed to collect the training data
while keep the same performance improvements.

Recently, GAN was proposed to help tune the con-
figuration parameters of Apache Spark programs named
ATCS [43], which is the closest work to ours. ATCS em-
ployes GAN to build performance models as functions of
Spark configuration parameters. Our work is different. We
leverage GAN to generate a part of training data for our
performance models. Moreover, ATCS does not outperform
DAC which is also design for optimizing the configurations
of Spark programs in the aspect of speedup. In contrast, our
GML does not only use less time for collecting training data
but also improves more performance than DAC.

7 CONCLUSION

Apache Flink programs have more than 300 configuration
parameters and a larger number of them are performance-
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critical. We propose an approach named guided machine
learning (GML) to auto-tune the configurations of Flink
programs. Compared to other ML based configuration auto-
tuning approaches for big data engines, GML can signifi-
cantly reduce the time needed for training data collection
and optimal configuration searching by innovating a GANs
based and a mean processing technique. Experimental re-
sults on a lab cluster and a production cluster show that
GML significantly outperforms traditional approaches.
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