A High Performance, Scalable DNS Service for Very Large Scale
Container Cloud Platforms

Haifeng Liu Shugang Chen Yuan Chen, Wei Ding
JD.com Inc. Yongcheng Bao, Wanli Yang Huasong Shan
Beijing, China JD.com Inc. JD.com Silicon Valley R&D Center

University of Science and Technology
of China
Heifei, China
bjliuhaifeng@jd.com

ABSTRACT

Containers and microservices are dominating the world of data
center and cloud computing. As the scale, dynamism and complex-
ity grow, the performance of the DNS system in container clusters
becomes vital. As the world’s third and China’s largest e-commerce
site by revenue, JD.com runs one of the world’s largest Kubernetes
container clusters in production. It is imperative that the DNS sys-
tem can handle extremely high traffic. In this paper, we present
ContainerDNS, a high performance DNS system for very large
scale container clusters with millions of containers. ContainerDNS
maximizes DNS system performance and scalability by optimiz-
ing DNS packet processing and using efficient memory and cache
management.

ContainerDNS has been deployed in JD’s container platform with
30,000 servers and 500,000 containers running tens of thousands
of services and applications. It improves the maximum throughput
from 130,000 to 9,000,000 QPS, a 67X performance boost comparing
to existing DNS systems.

CCS CONCEPTS

« Networks — Naming and addressing; Cloud computing;

KEYWORDS

Container, Domain Name Systems, Cloud Computing, Performance,
Scalability, Kubernetes

ACM Reference Format:

Haifeng Liu, Shugang Chen, Yongcheng Bao, Wanli Yang, and Yuan Chen,
Wei Ding, Huasong Shan. 2018. A High Performance, Scalable DNS Ser-
vice for Very Large Scale Container Cloud Platforms. In 19th International
Middleware Conference Industry (Middleware ’18 Industry), December 10-14,
2018, Rennes, France. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3284028.3284034

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware ’18 Industry, December 10-14, 2018, Rennes, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6016-6/18/12...$15.00
https://doi.org/10.1145/3284028.3284034

Beijing, China
{chenshugang,baoyongcheng,
yangwanli}@jd.com

39

{yuan.chen,wei.ding,huasong.shan}@
jd.com

1 INTRODUCTION

Cloud computing and middleware are quickly moving toward cloud-
native approach that leverages containers and microservices [13—
15, 22, 23, 25]. Applications are splitted into small microservices
and deployed to a sea of containers [16]. A single application might
consist of hundreds of services with thousands of instances, each
running in a container such as Docker [2], and each service is
typically associated with one or multiple virtual IPs as the service
access point. Such a container platform usually employs the Domain
Name Service (DNS) to manage the domain names of the services
and their IPs.

For very large scale services whose instances are dynamically
created and scheduled by an orchestrator like Kubernetes [6], It is
a great challenge to provide a performant and scalable DNS system.
For example, currently there are about 500,000 active containers
hosting retailing related services in our data center. This extremely
large scale container platform requires the DNS system to be able to
handle very high volume of DNS lookup requests. The most recent
data from our production system shows that the peak throughput
to the DNS system can reach 3.5 million queries per second (QPS).
Some public services such as monitoring service heavily rely on
the DNS system, and can contribute much more throughputs than
others. These services can constantly change due to service creation,
deletion, update, elastic scaling, failure-recovery, etc. To the best of
our knowledge, none of existing container-based DNS systems can
be used in this large scale, high throughput, and dynamic production
environment.

In addition, our evaluation shows that the existing container-
based DNS systems could suffer great performance fluctuations due
to dynamic memory allocation and garbage collection. This will
severely hurt the performance of our online services and in turn
affect the customer experience, especially when the throughput is
high.

In this paper we present ContainerDNS, a container-based DNS
system, to address these issues in our production environment. The
key contributions of this paper are summarized as follows.

e We reveal the problems of the existing container-based DNS
systems based on our past experience with JD’s Kubernetes
platform.

e We propose ContainerDNS, a scalable and high performance
DNS system for very large scale container platforms to re-
solve these problems. The code is available at https://github.
com/tiglabs/containerdns.

https://doi.org/10.1145/3284028.3284034
https://doi.org/10.1145/3284028.3284034
https://doi.org/10.1145/3284028.3284034
https://github.com/tiglabs/containerdns
https://github.com/tiglabs/containerdns

A High Performance, Scalable DNS Service for Containers

200000

180000
160000
@ 140000

——kube-dns

1 65 10 15 20 25 30 40 50 60 90 120

Number of Concurrent Client Threads

Figure 1: Scalability limitation in kube-dns and CoreDNS.

e We show that, in our experiments, ContainerDNS could
achieve a maximum throughput of nearly 9 million QPS,
about 67X better than that of the existing container-based
DNS systems. It exhibits much more consistent performance
with minimum variations comparing to existing systems,
and its 99th percentile response time is less than 5ms at the
peak throughput.

The rest of the paper is organized as follows. Section 2 explains
the problems of the existing DNS systems on our Kubernetes plat-
form. Section 3 describes the detailed design of ContainerDNS and
related optimization techniques, and shows how the issues identi-
fied in Section 2 can be resolved by ContainerDNS in our production
environment. Section 4 presents the experimental results with Con-
tainerDNS and other existing DNS systems from various aspects.
Section 5 reviews the related work and we conclude the paper with
a summary and a description of future directions in Section 6.

2 PROBLEMS WITH THE EXISTING DNS
SERVICES

kube-dns [5] and CoreDNS [1] are two popular DNS systems for Ku-
bernetes container platforms. The kube-dns is integrated with Ku-
bernetes as the default DNS solution. In the kube-dns, several con-
tainers are used and deployed together on the same host: kubedns,
dnsmasq, and sidecar. The kubedns watches for changes in Services
and Endpoints, and maintains in-memory lookup structures to
serve DNS requests; the dnsmasq provides caching and stub domain
support to improve the performance; and the sidecar provides met-
rics and health checks. The CoreDNS, a Cloud Native Computing
Foundation incubating project, is the newest container-based DNS
system. Compared to the kube-dns, the CoreDNS implements all the
functionalities of the kubedns, dnsmasq and sidecar in a single con-
tainer running a process written in Golang. The different plugins
replicate and enhance the functionality found in the kube-dns.

As the business grows, during the process of launching more
and more services/applications to JD’s Kubernetes platform, several
problems, such as scalability limitation and performance fluctuation,
have been discovered in the existing container-based DNS systems.

40

Haifeng Liu et al.

160000
140000
— 120000

CoreDNS

100000
80000
60000
40000
20000

0

Throughput (QPS

SkyDNS

Time

—SkyDNS —CoreDNS

Figure 2: Performance fluctuation in SkyDNS and CoreDNS.

2.1 Scalability Limitation

In order to examine the scalability, we use a varying number of
concurrent client threads to send the DNS requests to each DNS
system. The details of this experiment will be provided in Section 4.
As can be seen from Figure 1, the maximum throughputs that the
kube-dns and the CoreDNS can reach are 140,000 QPS and 170,000
QPS, respectively. However, in our production environment, the
throughput of DNS requests can be as high as 3.5 million QPS,
which means that neither kube-dns nor CoreDNS could meet our
needs.

2.2 Performance Fluctuation

In order to examine the stability, we pre-populate 2 million DNS
records! to the DNS system in order to simulate the production
environment. We are not able to perform this experiment for kube-
dns,? but we include the results with SkyDNS [9], a well-known
DNS component that was used in the previous version of kube-dns,
to show that the performance fluctuation is a common issue in
existing DNS systems. As can be seen from Figure 2, the maximum
throughput of SkyDNS varies from 40,000 QPS to 140,000 QPS
(after omitting the noise). CoreDNS suffers a similar issue and the
maximum throughput varies between 80,000 QPS and 120,000 QPS
(after omitting the noise). A further profiling analysis reveals the
performance variations are mainly caused by dynamic memory
allocation and garbage collection arising from the implementations
in Golang.

3 THE CONTAINERDNS

Figure 3 illustrates the high level architecture of ContainerDNS,
which has four main components: DNS server (with a DNS cache),
DNS datastore, Service monitor, and IP status probe.

The DNS server is the brain of ContainerDNS that serves for
all the incoming DNS requests. The DNS datastore is a distributed

1 A DNS record is a data structure that consists of a domain name, corresponding IP
addresses, and other related fields.

2A common way to perform this experiment is to inject a large amount of DNS records
to the persistent storage (e.g., a key-value store) directly connected to the DNS system.
However, the latest version of kube-dns does not directly interact with such a persistent
storage anymore, which make it very difficult for us to perform this experiment in a
similar way.

A High Performance, Scalable DNS Service for Containers

DNS
‘ DNS Server

Kubernetes A
Service | sync

ContainerDNS

lookup with domain name
ServiceName.Namespace

(o

il

1

'

\ list/watch ,~~»| DNS data [€-~,

1 service . store 0

1 changes ! update ' update
' 1domain name '

'

'

VP
N e __y| Service IPstatus | __| _ f(iaf_ >
\Monitor Probe j

Figure 3: ContainerDNS architecture.

key/value store that persists all the DNS records. The DNS cache
resides on the server and has a copy of the data (up to its cache size
limit) in the datastore. Upon receiving a lookup request from the
client, the DNS server will first try to fetch the DNS record from
the cache directly. If this operation fails, then the server will either
return with an error message (for local lookup request?) or forward
the request to other DNS server (for non-local lookup request). In
addition, whenever there is an update in the datastore, the server
will be notified to synchronize its cache, so that the client has less
chance to obtain the stale data.

The Service monitor watches for service and endpoint changes
in real time and updates the DNS datastore accordingly. It provides
both incremental synchronization and full synchronization. The
former one keeps the datastore up-to-date for any service or end-
point change, and the latter one periodically (every 10 minutes
by default) synchronizes the full data set of the service and end-
point information with that in the DNS datastore to ensure the
data consistency. The full synchronization is necessary since the
incremental synchronization may fail due to the network failure,
etc.

The IP status probe keeps the DNS datastore up-to-date for any IP
change in real time. It consists of a probe-scheduler and multiple IP-
scanners. Whenever there is a service or endpoint change (notified
by the Service monitor), the probe-scheduler will assign a probe
task to one of the IP-scanners, who will then actively scan the IP
addresses and ports for liveness, and update the DNS datastore
accordingly.

It should be noted that, there can be multiple instances of the
Service monitor and the IP status probe for performance and avail-
ability. As a result, a change in the container cluster can lead to con-
current updates in the DNS datastore from multiple monitor/probe
instances. To address this issue, the monitor/probe first performs a
check in the datastore, and aborts the write operation if the data
has already been updated.

ContainerDNS has been fully integrated with Kubernetes to pro-
vide better service management for large scale container clusters,
including hot upgrade and autoscaling in multiple domains. A net-
work routing process such as Quagga [8] has been deployed on each

3For example, if a DNS server is responsible for serving all the queries to *.tst.local,
then the request for resolving *.tst.local is a local lookup request.

41

Middleware *18 Industry, December 10-14, 2018, Rennes, France

DNS data ||
domain update none-local '
request lookup request . ,'
--- 1“|"--"""""""""“‘x‘
Packet Forwarding local lookup: ' DNS Server
Threads response , !
1 local lookup
1} request
L
L}
dispatch ' 4
domain updates (— _g_e_t >
> - DNS |1
Slave Core Upgate ;
cache :

A
outgoing non-local 1 incoming local
. lookup request 1 lookup request
B b e .
1

Figure 4: Internal structure of DPDK-based DNS server.

physical machine running ContainerDNS. Shutting down the rout-
ing process on a machine will disable the corresponding DNS server.
In this way, it is convenient to perform dynamic rollbacks (to handle
failures) and upgrades without service interruption. Similarly, by
starting or killing the routing processes, we can dynamically scale
in/out the number of machine running ContainerDNS. This design
enables ContainerDNS to achieve hot upgrade, high availability
and scalability in a simple manner.

Next we discuss the key techniques used in ContainerDNS to
serve high throughput and very large scale container platforms.

3.1 Improving Performance/Scalability by
Accelerating Packet Processing

Our profiling results show that both kube-dns and CoreDNS spend
a lot of time on sending, receiving and forwarding the DNS packets
on the server side due to the involvement of the Linux protocol stack
for every packet. Motivated by this, the DNS server in ContainerDNS
is designed with the goals of minimizing the overhead of processing
the packets and maximizing the concurrency of operations, hence
achieving the maximum throughput.

Figure 4 gives the internal structure of the DNS server, which
leverages DPDK [3], a set of libraries and drivers written in C, to
develop fast packet processing with minimum CPU cycles. The
DNS server consists of one master core and multiple slave cores.
The master core is mainly used to (1) dispatch the update requests
of the domain names (from the data store) to the slaves, and (2)
forward the lookup requests of non-local domain names (originated
from the clients) to the network. The slave core is responsible for
processing the update requests from the master core, and handling
the lookup requests of local domain names.

Specifically, when a domain has been updated in the data store,
an update request will be sent to the master core, who will then
assign one of the slaves to update the cache (see the thick arrow
lines in Figure 4). On the other hand, upon receiving a lookup
request over the network, the slave will first check if the domain
name is in the local zone or not. If the answer is yes, then the slave

A High Performance, Scalable DNS Service for Containers

will just return the data fetched from the DNS cache to the client
(see the dash arrow lines in Figure 4). Otherwise, it will forward
the request to a set of background threads for future analysis and
process. The processed request will be sent back to the master core,
who will then send it out to the network through the Receive Side
Scaling (RSS) to the upper level DNS server for resolution? (see the
red arrow lines in Figure 4).

There are three optimization techniques used for packet process-
ing, as explained below:

e Lock-free sending and receiving queues. Each slave core
processes data on a receiving queue and sends the packets
back to the master core through a sending queue. Therefore,
each slave core independently sends and receives packets
without requiring any locking mechanism, improving the
concurrency and performance of packet processing.

e Background threads to process non-local requests. Be-
cause processing the non-local domain names can slow down
the local zone name resolution, we use a set of background
threads for packet forwarding and processing. These threads
are not bound to any CPU cores and are completely sepa-
rated from the master and slave cores. When a slave core
receives a non-local domain name, it places the request into
a queue shared among the background threads. Thus, the
slave cores can resolve the local domain name quickly with-
out being blocked. A background thread reads request from
the queue, pre-processes the data and forwards it to the up-
per level DNS server. It then adds the result to the queue
shared with the master core. By employing the background
threads, we remove the work of dealing with non-local do-
main names from the critical path of processing the local
domain names. Therefore, the concurrency and performance
of packet processing are able to be further improved.

e Shared memory buffer. Since the data is shared between
the background thread and the master core thread via shared
memory buffer, there is no data copy involved during the
entire operation, which further improves the performance
of processing the packets.

3.2 Improving Performance by Effective Cache

Management

Most of the existing DNS systems use TTL-based cache replace-
ment policy. There are two problems associated with this approach.
First, the cache performance is very sensitive to the cache size.
A DNS system with good performance typically requires a large
cache size, which can be expensive. Second, in a dynamic container
environment, the domain names can be updated frequently and
data consistency and freshness can become a problem.

To address these issues, we propose to actively monitor the
change of the domain names and update the cache accordingly. In
this way, the cached data never ages and the consistency between
the cached data and the original data in the datastore gets improved
(i.e., the possibility of accessing stale data from the cache is re-
duced). When the cache is full, the DNS server randomly selects

4Receive side scaling (RSS) is a network driver technology that enables the efficient
distribution of network receive processing across multiple CPUs in multiprocessor
systems.

42

Haifeng Liu et al.

Table 1: Measured resource usages of ContainerDNS with
kube-dns and CoreDNS at the maximum throughput as
shown in Figure 5(c).

Systems Max QPS CPU (%) Mem.(%) Net.(MB/s)
kube-dns 131,911 24.5 4.3 25.8
CoreDNS 174,738 10.1 4.4 37.4
ContainerDNS 8,800,085 16.3 4.6 1729.5

the exceeded number of data records and deletes them from the
cache.

This real time monitoring/updating mechanism work wells un-
der normal conditions, however, it may fail to detect the changes
in the datastore due to machine or network failures, which could
happen several times a week in our system, causing data incon-
sistency between the cache and the datastore. In order to prevent
this happening, a full synchronization between the cache and the
datastore is performed periodically. To minimize the overhead, the
DNS server records the most recent update time for each domain
name, and if a change is more recent than the time of the previous
synchronization, there is no need for update.

3.3 Minimizing Performance Fluctuation by
Efficient Memory Management

Existing container-based DNS systems such as kube-dns and CoreDNS
are implemented in Golang and their performance varies a lot due to
memory allocation and garbage collection. This has a huge impact
on the application performance and availability when the traffic to
the DNS system is high, especially for the latency-sensitive online
services. For example, as shown in Section 2.2, the peak throughput
of SkyDNS varies a lot from 40,000 QPS to 140,000 QPS. The analy-
sis of the profiled data reveals that it dynamically allocates 200GB
memory and the memory garbage collection later leads to the per-
formance fluctuation. kube-dns and CoreDNS suffer a similar issue
though to a less severe extent.

Because our DPDK-based DNS server is implemented in C, we
are able to pre-allocate memory blocks on the collected memory
usage and explicitly manage the memory pool on demand. These
fixed-size memory blocks can only be accessed through a lock-
free queue, which greatly reduces the need for dynamic memory
allocation, and therefore minimizes the performance jitter.

4 EVALUATION

In this section, we will present the experimental results with Con-
tainerDNS and other existing DNS systems from various perfor-
mance and scalability aspects.

In our experiment setup, each instance of DNS system (e.g.,
kube-dns, CoreDNS, and ContainerDNS) runs on a set of machines
with Intel® Xeon® CPU E5-2698 v4@ 2.20GHz (80 cores), 256GB
DRAM and 82599ES-10-Gigabit SFI/SFP+ network connection, and
a certain number of DNS records are pre-populated to each DNS
system. Concurrent client threads continuously send random DNS
requests to the DNS server using JMeter [4]. Unless specified, each
run lasts 15 minutes and the performance is measured every second
using queryperf [7].

A High Performance, Scalable DNS Service for Containers

10000000
9000000
8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

0

Throughput (QPS)

N o o SRS
@Q@ P P P
@ AP 4P P oS @‘3@6"3

Number of Concurrent Client Threads

PSS

(a) Scalability of ContainerDNS.

10000000
9000000
8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

67X 51X

Maximum Throughput (QPS)

kube-dns CoreDNS ContainerDNS

(c) Comparison of maximum throughput.

Middleware *18 Industry, December 10-14, 2018, Rennes, France

200000
180000
160000
140000

-
[2%]
[=]
(=)
o
o

100000
80000
60000
40000
20000

0

=g==kube-dns
=e=CoreDNS

Throughput (QPS)

1 5 10
Number of Concurrent Client Threads

15 20 25 30 40 50 60 90 120

(b) Scalability of kube-dns and CoreDNS.

1 —

-

e

99" Percentile Response Time (ms)

S O L
S &S S S S S SSS

Number of Concurrent Client Threads

N D
(,JQ \QQ \(,JQ

(d) 98t percentile response time of ContainerDNS.

Figure 5: Comparison of scalability and latency.

4.1 Throughput and Latency

To compare the throughput, we pre-populate 50,000 DNS records
to each DNS system, and use varies number of concurrent client
threads to measure the throughput. Figure 5(a) and (b) shows the
maximum throughputs of ContainerDNS and its competitors as
the number of concurrent client threads increases.’ It can be seen
that, the throughput of ContainerDNS keeps increasing to about
9 million QPS with 7700 concurrent client threads. In comparison,
kube-dns and CoreDNS can only reach the maximum throughput of
140,000 QPS and 174,000 QPS respectively with about 30 concurrent
client threads. The maximum throughput of containerDNS is 67X
and 51X better than that of kube-dns and CoreDNS, respectively
(see Figure 5(c)).

We further compare the resource usages of ContainerDNS with
kube-dns and CoreDNS at the maximum throughput. The results
are shown in Table 1. ContainerDNS consumes the similar amount
of CPU and memory resources as that of the other systems despite
achieving a much higher throughput. The network bandwidth usage
of ContainerDNS is much higher than the others because of its
extremely high request rate and throughput as expected.

In addition Figure 5(d) plots the 99th percentile response time
for ContainerDNS during this experiment. The latency is less than

SFigure 5(b) is copied from Figure 1 in Section 2.1. Putting it here is just for the purpose
of better illustrating the scalability advantage of ContainerDNS.

43

1ms with 5000 concurrent client threads or fewer, and less than
5ms at the peak throughput with 7700 concurrent client threads. In
our production environment, we have not met any issue with the
latency in this range.

4.2 Performance Stability

To exam the performance stability, we pre-populate the same set
of 2 million DNS records to each DNS system and use 30 concur-
rent clients to send out the DNS requests.® Figure 6 illustrates the
throughput stability of ContainerDNS comparing to SkyDNS and
CoreDNS.”. As can be seen, ContainerDNS has the least perfor-
mance fluctuation with the highest throughput. Its throughput
only varies between 180,003 QPS and 187,293 QPS. By contrast,
the throughputs of SkyDNS and CoresDNS fall into the ranges of
[40,000 - 138,000] QPS and [78,000 - 123,000] QPS, respectively
(after omitting the noise).

4.3 Performance Impact on Cache Size

We evaluate the impact of different cache sizes by comparing the
performance of CoreDNS (which uses the TTL-based cache replace-
ment policy) with ContainerDNS (which monitors the change in

©30 concurrent clients are used for the purpose of comparison. ContainerDNS can
achieve much higher concurrency and throughput with many more clients.
7Please refer to Section 2.2 for the reason of choosing SkyDNS instead of kube-dns.

A High Performance, Scalable DNS Service for Containers

200000
180000 | \
160000 CoreDNS ContainerDNS
2 140000 /
%120000
2100000
2 80000
£ 60000
40000
20000 \ SkyDNS
0
Time
—SkyDNS — ContainerDNS ——CoreDNS
Systems Average Median Max. Min.
SkyDNS 81,083 43,224 138,564 1
CoreDNS 108,822 109,638 123,155 78,428
ContainerDNS 186,003 186,011 187,293 184,152

Figure 6: Throughput stability compared against SkyDNS
and CoreDNS.

250000

& ContainerDNS m CoreDNS

& 200000
o
<]
= 150000

100000

Throughpu

50000

2
M

O,

0 20,000 50,000
Cache Size (number of records in cache)

Figure 7: Performance impact on different cache sizes com-
pared against CoreDNS.

the datastore and updates the cache in real time). We were not able
to obtain the result from kube-dns due to its native integration
with Kubernetes. In this experiment, we pre-populate 50,000 DNS
records to each DNS system, and use three cache sizes (in terms of
the number of domain names): 0 (no cache), 20,000 (partial cache)
and 50,000 (full cache) with 120 concurrent client threads to send
the DNS requests.

Figure 7 shows that ContainerDNS exhibits a much better through-
put than CoreDNS (when with the same cache size). By contrast,
CoreDNS’s TTL-based method (TTL is set to 60 seconds) requires
a very large cache size to achieve similar throughput. In addition
to the performance advantage, ContainerDNS provides near real
time cache update and almost eliminates the possibility of getting
outdated data. In an experiment that lasts for a few weeks with
addition, deletion, update and lookup operations, the detection
of a change is generally within 20ms where the worst case is no
more than 60ms, and billions of operations never returned any
inconsistent or stale records.

44

Haifeng Liu et al.

4000000
3500000
3000000

2500000

2000000

1500000

Throughput(QPS)

1000000

500000

0

Time

Figure 8: Throughput of ContainerDNS on July 31, 2018 at
JD.com.

3000

N N
o 1%
[=] o
o o

1500

1000

0 L._LUJ_A_LJA_J_JLL‘MMLJUL.L

Time

%)
o
o

Number of Changes per Second

Figure 9: Changes of DNS records on July 31, 2018 at JD.com.

4.4 Real Production Data at JD.com

ContainerDNS has been deployed on one of the largest production
container clusters in the world with 30,000 high end servers, 500,000
containers hosting 40,000 microservices and serving hundreds of
billions online transactions every day. The container clusters con-
tinue to increase at a pace of 10,000 containers and 500 services
every day. Figure 8 shows the throughput of ContainerDNS on July
31, 2018 at JD.com. The average rate is 2.4 million QPS and the peak
reaches 3.5 million QPS.

Like typical microservice applications, the DNS records in our
clusters varies dramatically as the services/applications constantly
change because of service creation, update, elastic scaling and
failure-recovery, etc. Figure 9 illustrates the number of domain-
name changes on July 31, 2018. There were totally 24,772 domain-
name changes within a 9-hour period of time on that day, and the
maximum change rate is 2800 domain-name changes per minute.

5 RELATED WORK

DNS related systems have been studied extensively in both industry
and academia since Morckapetris and Postel invented the Internet
DNS and proposed the first DNS architecture in 1980’s [21]. An
active topic is DNS performance measurement [18, 26]. Load bal-
ancing is another area that has been investigated substantially [11,
17, 24]. As the core service of Internet and web applications, the

A High Performance, Scalable DNS Service for Containers

security of DNS is critical. A fair amount of work has been done to
address the DNS security issue [12, 20, 27]. All of the prior work
has focused on the Internet domain name systems. None of them
has addressed the DNS system in container clusters running a large
number of dynamic micro services.

Existing container platforms use DNS software such as SkyDNS [9],
kube-dns [5] and CoreDNS [1]. As discussed before, their perfor-
mance is not sufficient when used in vary large clusters with mil-
lions containers like what we have in our data centers. Bind9 is a
general DNS protocol and system. It was not designed for container
platforms and the support of service discovery and other features
are missing. Compared with the above systems, ContainerDNS of-
fers not only the best performance but also the full integration and
support of container and microservice management on Kubernetes
cluster platforms.

6 CONCLUSION AND FUTURE WORK

New challenges arise with the coming era of cloud native computing
with microservices running in container and managed by orchestra-
tion engines like Kubernetes [6], Mesos [19], and Swarm [10]. As
the scale and complexity of container clusters is growing, exiting
DNS system software cannot meet the performance and scalability
requirements. We propose ContainerDNS and demonstrate that the
use of advanced packet processing, optimized concurrency and effi-
cient memory management can significantly improve DNS system
performance and scalability. To the best of our knowledge, it is the
first DPDK-based DNS system for container platforms that can sup-
port up to 9 million requests per second with a response time less
than 5ms. It also offers better cache performance, data consistency
and service management. ContainerDNS has been deployed on one
of the world’s largest Kubernetes clusters in production at JD.com.

REFERENCES

[1] [n.d.]. CoreDNS. "https://coredns.io/".
[2] [n.d.]. Docker. "https://www.docker.com/".

45

Middleware *18 Industry, December 10-14, 2018, Rennes, France

—_
A

n. d.]. DPDK. "https://dpdk.org/".

n. d.]. Jmeter. "https://github.com/apache/jmeter".

.d.
o

ﬁh

O
ACNCY
=9

BB

d

d
n. d.]. Qugga. "https://www.quagga.net/".
n. d.]. SkyDNS. "https://github.com/skynetservices/skydns".
[n. d.]. Swarm. "https://docs.docker.com/engine/swarm/".
Charles Edward Anderson IV, Thomas Carroll Willis Jr, and Jason Andrew Willis.
2006. System, method and computer program product for caching domain name
system information on a network gateway. US Patent 7,152,118.
Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. 2005. DNS
security introduction and requirements. Technical Report.
Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2015. Migrating to
cloud-native architectures using microservices: an experience report. In European
Conference on Service-Oriented and Cloud Computing. Springer, 201-215.
Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices
architecture enables devops: Migration to a cloud-native architecture. IEEE
Software 33, 3 (2016), 42-52.
David Bernstein. 2014. Containers and cloud: From Ixc to docker to kubernetes.
IEEE Cloud Computing 3 (2014), 81-84.
Eric A Brewer. 2015. Kubernetes and the path to cloud native. In Proceedings of
the Sixth ACM Symposium on Cloud Computing. ACM, 167-167.
Thomas Brisco. 1995. DNS support for load balancing. (1995).
Peter B Danzig, Katia Obraczka, and Anant Kumar. 1992. An analysis of wide-
area name server traffic: a study of the Internet Domain Name System. ACM
SIGCOMM Computer Communication Review 22, 4 (1992), 281-292.
Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Jos&i:ph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.. In NSDI, Vol. 11. 22-22.

Bill Karakostas. 2013. A DNS architecture for the internet of things: A case study
in transport logistics. Procedia Computer Science 19 (2013), 594-601.

Paul Mockapetris and Kevin J Dunlap. 1988. Development of the domain name
system. Vol. 18. ACM.

Claus Pahl. 2015. Containerization and the paas cloud. IEEE Cloud Computing 2,
3 (2015), 24-31.

Robert Sandoval et al. 2015. A case study in enabling DevOps using Docker. Ph.D.
Dissertation.

Eric Sven-Johan Swildens, Richard David Day, and Vikas Garg. 2004. Scalable
domain name system with persistence and load balancing. US Patent 6,754,706.
Johannes Thénes. 2015. Microservices. IEEE software 32, 1 (2015), 116-116.
Roland van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko Pras. 2016. A
High-Performance, Scalable Infrastructure for Large-Scale Active DNS Measure-
ments. IEEE Journal on Selected Areas in Communications 34, 6 (2016), 1877-1888.
Brian Wellington. 2000. Secure domain name system (DNS) dynamic update.
Technical Report.

=
it

ey
&

O™
A

~
=

"https://coredns.io/"
"https://www.docker.com/"
"https://dpdk.org/"
"https://github.com/apache/jmeter"
"https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns"
"https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns"
"https://kubernetes.io/"
"https://linux.die.net/man/8/perfquery"
"https://www.quagga.net/"
"https://github.com/skynetservices/skydns"
"https://docs.docker.com/engine/swarm/"

	Abstract
	1 Introduction
	2 Problems with the Existing DNS Services
	2.1 Scalability Limitation
	2.2 Performance Fluctuation

	3 The ContainerDNS
	3.1 Improving Performance/Scalability by Accelerating Packet Processing
	3.2 Improving Performance by Effective Cache Management
	3.3 Minimizing Performance Fluctuation by Efficient Memory Management

	4 Evaluation
	4.1 Throughput and Latency
	4.2 Performance Stability
	4.3 Performance Impact on Cache Size
	4.4 Real Production Data at JD.com

	5 Related Work
	6 Conclusion and Future Work
	References

