- **Problem**
 Small-window long-tail latency (SWLT)
 Long tail latency at extremely small timescales (e.g., 1 minute, even 1 second) for web services deployed in container based microservice platforms

- **Solution**
 ε-Diagnosis
 - Selecting two samples from the snapshot
 - Two-sample null hypothesis test
 - c-Statistics (Energy distance correlation)

  ```
  Algorithm 1 Pseudo-code for the ε-Diagnosis algorithm
  Input: small-window long-tail latency, N time-series metrics of N containers, confidence threshold α, alarm window
  Output: candidate root-cause metrics, problematic containers
  1. procedure ε-DIAGNOSIS
  2. for ContainerN \( \leftarrow 1 \) to \( N \) do
  3. \( S_A = \text{getAnomalySample} \)
  4. \( S_N = \text{getNormalSample} \)
  5. for MetricM \( \leftarrow 1 \) to \( M \) do
  6. \((\rho(S_A, S_N), P) = \text{Calculate Energy distance correlation coefficient of } S_A \text{ and } S_N \text{ using Equation (3)} \) with P-value
  7. if \( P < \alpha \) then
  8. \( '/' \text{ Reject Hypothesis } S_A \neq S_N '/' \)
  9. add MetricM as a candidate root-cause metric
  10. end if
  11. else
  12. \( '/' \text{ Accept Hypothesis } S_A = S_N '/' \)
  13. end if
  14. end for
  15. end procedure
  ```

 Energy distance correlation
 \[
 \rho^2(S_A, S_N) = \frac{\sigma^2(S_A) \cdot \sigma^2(S_N)}{\sqrt{\sigma^2(S_A) + \sigma^2(S_N)}}
 \]

- **Evaluations**
 Baseline
 - Pearson’s distance
 - K-NN: K-Nearest Neighbor
 - MST: Minimal Spanning Tree

 ε-Diagnosis: energy distance correlation
 - Energy can reach 100% recall quickly as \(\alpha \) increases

- **Operational Results in Real-Production**
 - c-Diagnosis(Energy) reduces metrics to approximately 10%

- **Conclusion and Future Works**
 - c-Diagnosis finished to diagnose metrics anomaly of each container in large-scale microservice platforms
 - Further root-cause diagnosis will extend other use cases for microservice–based web applications at JD.com