
ϵ-Diagnosis: Unsupervised and Real-time Diagnosis of Small-
window Long-tail Latency in Large-scale Microservice Platforms

Huasong Shan
1
, Yuan Chen

1
, Haifeng Liu

1,2
, Yunpeng Zhang

1
, Xiao Xiao

1
, Xiaofeng He

1
,

Min Li
1
, Wei Ding

1

1
JD.com

2
University of Science and Technology of China

ABSTRACT
Microservice architectures and container technologies are broadly

adopted by giant internet companies to support their web services,

which typically have a strict service-level objective (SLO), tail la-

tency, rather than average latency. However, diagnosing SLO viola-

tions, e.g., long tail latency problem, is non-trivial for large-scale

web applications in shared microservice platforms due to million-

level operational data and complex operational environments.

We identify a new type of tail latency problem for web services,

small-window long-tail latency (SWLT), which is typically aggre-

gated during a small statistical window (e.g., 1-minute or 1-second).

We observe SWLT usually occurs in a small number of containers

in microservice clusters and sharply shifts among different con-

tainers at different time points. To diagnose root-causes of SWLT,

we propose an unsupervised and low-cost diagnosis algorithm–

ϵ-Diagnosis, using two-sample test algorithm and ϵ-statistics for
measuring similarity of time series to identify root-cause metrics

from millions of metrics. We implement and deploy a real-time di-

agnosis system in our real-production microservice platforms. The

evaluation using real web application datasets demonstrates that

ϵ-Diagnosis can identify all the actual root-causes at runtime and

significantly reduce the candidate problem space, outperforming

other time-series distance based root-cause analysis algorithms.

CCS CONCEPTS
• General and reference→ Performance; Measurement; • Infor-
mation systems→ Online analytical processing;

KEYWORDS
Root-cause analysis; tail latency; time series similarity

ACM Reference Format:
Huasong Shan

1
, Yuan Chen

1
, Haifeng Liu

1,2
, Yunpeng Zhang

1
, Xiao Xiao

1
,

Xiaofeng He
1
, Min Li

1
, Wei Ding

1
. 2019. ϵ -Diagnosis: Unsupervised and

Real-time Diagnosis of Small- window Long-tail Latency in Large-scale Mi-

croservice Platforms . In Proceedings of the 2019 World Wide Web Conference
(WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3308558.3313653

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313653

1 INTRODUCTION
Tail latency [3, 7–9, 18, 19, 22, 25, 29, 29, 38, 44, 48, 49] becomes

the main consideration as Service Level Objective (SLO) on perfor-

mance [1, 30] for today’s most of systems and applications, such

as search engine [7, 25], key-value store [9, 21], datacenter net-

work system [22, 48], shared networked storage [49], online data-

intensive applications [44], big data system [8] etc. Strict SLO usu-

ally requires tail latency, rather than average latency. For example,

Google requires the 99th percentile service time (written TP99) for
its webSearch cluster within tens of milliseconds [25].

Some e-commerce companies try their best to provide the fastest

user experience, they expect their web services can serve the re-

quests within several milliseconds. Using a large statistical window

to calculate the tail latency can not accurately identify the long-tail

latency problem, thus they calculate the tail latency for their on-

line shopping web services during 1-minute period, even during

1-second period. We call this type of tail latency as small-window
tail latency. We study the small-window tail latency from the real-

production web services in container-based microservice platforms

(Section 2), finding that a new type of long-tail latency problem–

small-window long-tail latency (SWLT), which usually occurs in a

small number of containers in the microservice clusters, sharply

shifts among different containers at different time points, and the

tail latency of each container varies significantly.

Diagnosing root-causes of SWLT quickly is a challenging task.

Firstly, as the business requirements increase, the number of web

services dramatically increases. Figure 1 records the weekly number

of web services from an internet company since July 2018, conse-

quently the monitored performance metrics increase in million

level [43]. Once SWLT occurs, identifying root-causes of SWLT

seems like finding a needle from haystack. Secondly, current ma-

chine learn and deep learning based root-cause analysis approaches,

heavily depend on training of massive data with highly comput-

ing cost, which is suitable for diagnosing daily [23] or seasonal

anomaly [46], not fit for diagnosing the long-tail latency at ex-

tremely small timescales which have a heavy-tail, frequent-change

and high-variance feature. Diagnosing root-causes of SWLT re-

quires the algorithm with low computation cost and high recall,

and real-time delivery of analytical results.

In this paper, we present an unsupervised and low-cost root-

cause analysis algorithm to diagnose root-causes of SWLT at run-

time for web services in large-scale microservice platforms. In

particular, we make the following contributions.

• We identify a new type of tail latency problem, small-window
long-tail latency (e.g., in an 1-minute or 1-second period),

which has a heavy-tail and high-variance characterization

https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3308558.3313653

Figure 1: Number of web services in an internet company.

(Section 2). To the best of our knowledge, no current root-

cause analysis algorithm can scale to such granularity.

• We propose an unsupervised and low-cost root-cause anal-

ysis algorithm–ϵ-Diagnosis (Section 3), using two-sample

test algorithm and ϵ-statistics for measuring the similarity of

time series, to identify root-causes of SWLT from millions of

metrics for on-line web services at runtime. The ϵ-statistics
is specially well-suited for the root-cause analysis for the

heavy-tailed and highly-variant web applications.

• We implement a real-time diagnosis system in our real-

production microservice platforms (Section 3). The evalua-

tion using real-production datasets demonstrates the effec-

tiveness and efficiency of the proposed root-cause analysis

algorithm (Section 4). Our results show that ϵ-Diagnosis can
identify all the root-cause metrics of SWLT with highest

confidence level (lowest confidence threshold) compared to

other time series distance based analysis algorithms, and

reduce the candidate problem metrics to about 10%.

2 SMALL-WINDOW TAIL LATENCY
Long-tail phenomenons have been broadly observed in data-center [1,

7–10, 20, 22, 25, 37, 38, 44, 47–49], we focus on studying the tail

latency at extremely small timescales (e.g., 1 minute, even 1 sec-

ond) for web services deployed in container based microservice

platforms.

Datasets.We have running tens of thousands of web services in

our microservice platforms as shown in Figure 1, 90% applications

are deployed in a cluster of less than 100 containers. So we select

4 types of representative applications with different cluster sizes,

from small, medium, big, to super as shown in Table 1. We identify

SWLT, and manually verify the problematic containers and root-

cause metrics. We record 13 types of metrics for each container,

such as CPU utilization, memory usage, Disk I/O utilization etc., all

the metrics are observed with 1-minute resolution.

Observations. Figure 2 shows the 99th percentile response time

(called TP99, which are calculated during 1 minute. Here, we use

TP99 as an example of tail latency) and its variability of each con-

tainer for the four application datasets.

From Figure 2a, we can see only a very small number of containers
are problematic when SWLT occurs. For application Small, Medium,

Big, there is only 1 container with problems most of the time. Ap-

plication Super can have up to 5 problematic containers, which can

Table 1: Datasets from real-production web services.

DataSet Small Medium Big Super

Problematic Containers (#) 2 2 7 13

Total Containers (#) 15 55 99 260

Root-cause Metrics (#) 2 3 12 17

Total Metrics (#) 13*15 13*55 13*99 13*260

Alarm Windows (minutes) 15 30 10 5

have the problem at the same time. For all cases, the number of

problematic containers is very small compared to the total number

of containers. Figure 2a also shows that the small-window tail la-
tency of each container changes very sharply. For example, the tail

latency increases from several milliseconds to approximately 2.5

seconds during the 25-minute monitoring period at the time of 18

for application Small.

To analyze the variability of TP99 for each container, We calcu-

late the coefficient of variation (COV) [45] for each container in

the container clusters for the four applications. COV is the ratio of

the standard deviation and the mean of the dataset, if COV > 1, it

means high-variance distribution, otherwise, it’s low-variance. In

Figure 2b, y-axis is COV for each container. We can see the small-
window tail latency for all the applications is highly variant. For
application Super, there are 24 high-variance containers, Big is 12,

Medium is 18, Small is 7.

Due to heavy-tail and high-variance characterization, identify-

ing root-causes of SWLT seems like finding a needle from haystack.

Developing an intelligent and real-time analysis system to automat-

ically diagnose root-cause metrics of SWLT from the application

cluster for large-scale web services has an important implication

for application administrators to identify SLO violations.

Goals. To diagnose root-causes of SWLT with high-variance and

frequent-shift in large-scale microservice platforms, the objectives

of designing the diagnosis algorithm and system are two-fold: (1)

the algorithm and the system can quickly diagnose root-causes at

runtime with low computation cost, (2) the algorithm can signifi-

cantly reduce the problem space (metrics) while guaranteeing not

to miss any actual root-cause.

3 ϵ-DIAGNOSIS SWLT
We propose an unsupervised and low-cost root-cause analysis al-

gorithm, ϵ-Diagnosis, which can diagnose root-causes of SWLT for

large-scale web services at runtime.

We assume that once the long response time occurs, root-cause

metrics in the problematic container might significantly change

between the abnormal and normal periods. Such that, root-cause

analysis is to identify the significantly-changed metrics. Therefore,

in order to identify the significantly-changed metrics as the can-

didate root-cause metrics, we can use two-sample null hypothesis

test (abnormal and normal samples) [26], which can use various

time series similarity measurement algorithms [17]. Here, we adopt

ϵ-statistics test (energy distance correlation) algorithms.

(a) TP99 of 4APPs. Each line represents theT P99 for a container.

(b) COV for 4APPs. Each bar represents the COV for a container.

Figure 2: TP99 and COV for 4 application clusters.

Detecting SWLT. To diagnose the root-cause of long-tail la-

tency, the first task is to detect the long-tail latency. Threshold-

based detection [12] is the simplest and widely-used anomaly detec-

tion approach. Our diagnosis system provides the alarm threshold

interface (e.g., TP99 threshold) for the application administrators to

detect SWLT for their web services. For example, the administra-

tors can define a rule: if the 99th percentile response time during

1 minute for one service is bigger than 2000ms, it will trigger an

alarm. Furthermore, the system provides alarm window interface to

aggregate the alarm number for the same type of alarms during the

alarm window. For example, if the alarm window is 15 minutes, the

alarm system only reports the first alarm during the 15-minute time

window. Once we detect a long-tail latency, it triggers ϵ-Diagnosis
algorithm to analyze root-causes.

Selecting two samples from the snapshot. To identify the

significantly-changed metrics as the root-cause, we store the con-

text of web applications in the snapshot for comparison analysis

when long-tail latency occurs. The snapshot includes various time-

series metrics data, extracted from both the application layer and

infrastructure layer cross millions of containers.

For application layer, we aggregate various performance metrics

from the log files of various servers (e.g., Apache, Tomcat, MySQL),

the metrics include throughput, QPS, concurrent loads, response

time, number of error log, number of log, number of database

connections etc. For infrastructure layer, we record all the metrics

about CPU, memory, disk, network of each container. We formulate

these time-series metrics as a time-series vector by

S(t) = [x1, x2, ..., xn]

where xi is the aggregation value during the statistical/sampling

period for each metric.

The system provides the alarm window interface to aggregate

the alarm number for the same type of alarms during the alarm

window. Thus we can guarantee there must exist some anomaly

metrics during the alarmwindow leading to long tail latency.We use

time-series metrics data during the alarm window as the abnormal
sample (SA). We choose time-series metrics data during the normal

period from the snapshot as the normal sample (SN).

Two-sample null hypothesis test.We would like to find the

significantly-changed time series metrics as root-cause metrics. The

two-sample test [36] is one of the most commonly used hypothesis

tests when you want to compare two independent datasets to see if

they are statistically similar or not. So we use two-sample test as the

algorithm flow of ϵ-Diagnosis. The hypothesis of the two-sample

test can be expressed by:{
H0 : SA = SN .
Ha : SA , SN .

(1)

if H0 is true, it means that abnormal samples (SA) and normal

samples (SN) are statistically equal. Otherwise, they are statistically

different.

Further, we can use permutation test [31] or bootstrapping [40]

to do hypothesis test, and calculate the p-value (P) using the sam-

pling distribution of the test statistic under the null hypothesis.

For different confidence level, we can get a confidence threshold

to accept or reject the hypothesis. If the distribution of the test

statistic of Hypothesis(1) is symmetric about 0, the test statistic is a

two-sided test; otherwise it is a one-side test. For example, if the

confidence level is 99% and it is a two-sided test, the confidence

threshold (α) is 0.05, {
P < α , SA , SN .
P ⩾ α , SA = SN .

(2)

Here, if P < α , we reject the hypothesis, which means that the anom-

aly sample and the normal sample are significantly different, so

the corresponding metrics of the samples are potential root-causes.

The overall ϵ-Diagnosis algorithm can be described in Algorithm 1.

The confidence threshold (α) plays a critical role in root-cause

accuracy for our root-cause service. If α is too low, we might miss

some true root-cause metrics, leading to higher false negative. If

α is too high, we might consider more metrics as the potential

root-cause, leading to higher false positive. So we have to make a

trade-off between recall and precision. In the evaluation section,

Algorithm 1 Pseudo-code for the ϵ-Diagnosis algorithm

Input: small-window long-tail latency, M time-series metrics

of N containers, confidence threshold α , alarm window

Output: candidate root-cause metrics, problematic containers

1: procedure ϵ-Diagnosis
2: for ContainerN ← 1 to N do
3: SA = getAnomalySample
4: SN = getNormalSample
5: forMetricM ← 1 toM do
6: (ρ (SA, SN), P) = Calculate Energy distance corre-

lation coefficient of SA and SN using Equation (3) with P-value

7: if P < α then
8: /* Reject Hypothesis SA != SN */

9: AddMetricM as a candidate root-cause metric

10: AddContainerN as a candidate problematic con-

tainer

11: else
12: /* Accept Hypothesis SA = SN */

13: end if
14: end for
15: end for
16: end procedure

we empirically get the optimal confidence threshold α . We leave

the auto-tuning of α as our future work.

ϵ-Statistics (Energy distance correlation). There are a lot of
literature work on time series similarity measurement [17]. From

observations in Figure 2) in Section 2, we note that the tail latency

at extremely small timescale for web services is heavy-tailed and

highly-variant. Energy distance based ϵ-statistics is specially well-

suited for heavy-tailed and highly-variant datasets with a low com-

putation cost [42]. Thus, we adopt ϵ-statistics test (energy distance

correlation) to measure the similarity of two samples.

Energy distance is a variation of squared pairwise distance. The

Energy correlation coefficient (ρ(SA, SN)) between anomaly sam-

ples (SA) and normal samples (SN) is defined as the square root

of,

ρ2 (SA, SN) =

cov2(SA,SN)√
σ 2(SA)σ 2(SN)

, σ 2
(SA) σ 2

(SN) > 0 .

0, σ 2
(SA) σ 2

(SN) = 0 .
(3)

where cov is the covariance of the two samples, σ is the standard

deviation of each sample. The benefit and speciality of ϵ-statistics
test is distribution-free, scale-equivariant and rotation-invariant.

Therefore, it is suitable for diagnosing root-causes of long-tail la-

tency for response time sensitive user-facing web services, in which

case the tail latency is aggregated at small timescales, e.g., during 1

minute or 1 second.

Real-time diagnosis system.We implement an automatic and

intelligent diagnosis system at runtime using ϵ-Diagnosis algorithm
to analyze root-causes of the long-tail latency at extremely small

timescales (e.g., 1 minute or 1 second) for tens of thousands web

applications deployed in our microservice platforms managed by

Figure 3: System architecture.

Kubernetes
1
as shown in Figure 3. It consists of two main compo-

nents: data layer and computing layer.

To support population-scale applications, enabling their SLO vio-

lation monitoring and delivering results as fast as possible (seconds)

are non-trivial. One challenge is to transfer the large volume oper-

ation data from the distributed containers. To reduce the amount

of data to transfer, we adopt Apache thrift
2
in the data collection

agents. Thrift can work with plug in serialization protocols and

data compression (e.g. gzip). We observe the compression ratio is

around 1/23. The data is pipelined by kafka
3
. Kafka is able to be

scaled quickly and easily without incurring any downtime, and

handle many terabytes of data with consistent performance.

In computation layer, we calculate the small-window tail la-

tency, detect SWLT by comparing the tail latency with the prede-

fined alarm thresholds, and use ϵ-Diagnosis algorithm to identify

the significantly-changed metrics as root-cause metrics. We adopt

Apche flink
4
to implement these functions in computation layer,

which can process the stream data with high performance and

low latency. All the long-tail alarms are stored in event database

(e.g., MySQL), all the time-series metrics are stored in time-series

database (e.g., ClickHouse
5
), time-series database [33] can provide

scalable performance for analytics and aggregation of time-series.

4 EVALUATIONS
4.1 Operational Data in Real-production
Our monitoring cluster consists of approximately 300 containers,

which can monitor the small-window tail latency of approximately

30000 web services in our microservice platforms as shown in

Figure 1. We deployed the root-cause analysis system in the moni-

toring cluster. Figure 4 shows the hourly amount of long-tail latency

alarms in three days for our web services. We detected approxi-

mately 30,000 long-tail latency with a peak of 50,000 in every hour.

The request rate of root-cause diagnosis in total is 8.3 per second

with a peak of 13.9 per second.

Execution time. One goal of designing the algorithm and the

system is to provide an diagnosis service to identify root-causes of

1
https://kubernetes.io/

2
https://thrift.apache.org/

3
https://kafka.apache.org/

4
https://flink.apache.org/

5
https://clickhouse.yandex/

Figure 4: Service rate of ϵ-Diagnosis in a real-life production.

Figure 5: Execution time of ϵ-Diagnosis, in seconds.

Figure 6: Energy can reach 100% recall quickly asα increases.

SWLT in mocroservice platforms at runtime. So we evaluate the

computation cost for ϵ-Diagnosis.
We run the ϵ-Diagnosis system in a container equipped with a

quad-core Intel Core i7 2.8 GHz CPU and 16 GB 2133 MHz LPDDR3

memory. Figure 5 shows the execution time for ϵ-Diagnosis algo-
rithm for the datasets in Table 1. For Small application, the execution

time of ϵ-Diagnosis is less than 1 second. As the number of the

containers increases, the running time increases. Medium and Big

are in the same level, since the sample size (alarm window) reduces

from 30 to 10 as shown in Table 1, although the container amount

increases from Medium to Big. In our microservice platforms, 80%

applications are small web applications. ϵ-Diagnosis can finish the

analysis within 1 second, so we use 10 containers to serve the

requests of root-cause analysis as shown in Figure 4.

Figure 7: Energy can reduce metrics to approximately 10%.

4.2 Performance of Algorithms
Next, we compare the performance of ϵ-Diagnosis with other time-

series distance based root-cause analysis algorithms.

Experimental Methodology. We use an empirical approach

in our experiments to define α . For example, we define α as a set

of values [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5], which are

corresponding to the confidence level of two-sample test [99%,

98%, 96%, 90%, 80%, 60%, 40%, 20%, 0%] (two-sides test). In our

experiments, we gradually increase α and evaluate the performance

of the algorithms.

We compare the performance of the ϵ-Diagnosis algorithm (based

on energy distance) with other three time-series similarity mea-

surements. Pearson’s distance is the simplest one, defined by,

ρ (SA, SN) =
cov(SA, SN)
σ (SA)σ (SN)

(4)

where cov is the covariance of the two samples, σ is the standard

deviation of each sample. K-NN [16, 26] and MST [15] algorithms

both discretize the time-series samples, transform the distance of

two time-series samples into inter-point distance, and use graph-

theoretic algorithm to measure their similarity. KNN algorithm uses

nearest neighbours to model the inter-point distance of two time

series, meanwhile MST algorithm uses minimum spanning tree to

represent their inter-point distance.

Results. We require that the algorithm can significantly reduce

the problem space from million-level metrics while guaranteeing

not missing any actual root-cause, namely guaranteeing 100% recall.

Figure 6 shows the recall of the four time-series measurement

algorithms on all four datasets. As the confidence threshold α in-

creases, the recall increases. We note that Energy can achieves 100%

recall when α equals 0.05. The two graphic-theory based algorithm

(MST and KNN) are 0.2 and 0.1, respectively. As α increases, Energy

can identify all the root-causes at the fastest speed. Pearson can

not find all the actual root-causes until α equals 0.5. So Pearson can

not fit our case and operational environments, and we will omit

the evaluation of Pearson.

Figure 7 shows that how much the time-series similarity mea-

surement algorithms can narrow down the candidate problematic

metrics from the total metrics under the condition of 100% recall

(For Energy, KNN, MST, α is 0.05, 0.1, and 0.2). Energy can reduce

metrics to approximately 10%, outperforming the other two, since

Figure 8: Various two-sample patterns. Each line represents a sample. Smaller P , more significantly different time series.

Table 2: Precision of the algorithms for the four datasets.

DataSet Small Medium Big Super

MST (%) 62 59 67 66

KNN (%) 76 67 65 62

Energy (%) 79 72 76 72

it uses the smallest α , counting smaller metrics as the potential

metrics. For the same reason, Energy can also get the best precision

(e.g., 79% for the small application) as shown in Table 2.

To explain why Energy can outperform the other three algo-

rithms, Figure 8 lists several representative time-series patterns

from the infrastructure layer metrics and their corresponding p-

value (P). Smaller P , more significantly different the two samples.

We can note Energy is more sensitive than the other algorithms

for all of the cases, specifically, it can identify more patterns as

different samples, so it can achieve 100% recall with the smallest

α . Meanwhile, there also exists false positive for Energy, since it

might falsely identify some more metrics patterns as root-causes

(e.g., "Fluctuation 2"). Pearson can not identify the the difference

of "Flat-UP", which is disappointing, because several root-cause

metrics have this type of peak pattern from our observations in our

microservice platforms, it will miss this type of root-cause metrics.

5 RELATEDWORK
Traditional rule (or signature) based performance diagnosis ap-

proaches for distributed systems, heavily depend on the opera-

tional fault knowledge base (such as Fingerprint [2, 6, 11]), and

detect the anomaly and performance bottlenecks through trac-

ing the request process flowing in large-scale distributed system

(such as Google’s Dapper [39], Mace [24], Pinpoint [5], Pip [34],

Stardust [35], X-Trace [14], Whodunit [4], Retro [27], Pivot Trac-

ing [28], Quanto [13]). However, it is hard to build both operational

fault knowledge base and call relationship in complex micro-service

based applications with tens of thousands of invocation graphs [32].

Compared to rule based root-cause analysis, we do not need any

operational knowledges and the training process.

Models and techniques for root-cause analysis are extensively

summarized in the survey paper [41]. Luo et al. [26] model inci-

dent diagnosis as a two-sample problem and apply k-NN statistic

based method to correlate event and time-series. Daily chronic prob-

lems [23] are statistically diagnosed, and seasonal KPIs alarms [46]

are detected by an unsupervised anomaly detection algorithm based

on VAE (Variational Auto-Encoder). Compared to statistical learn-

ing based root-cause analysis, our approach is an unsupervised

approach with low computation cost. More importantly, our di-

agnosis target is more fine-grained long-tail latency problem at

extremely small timescale (e.g., 1-minute or 1-second) for the large-

scale on-line web services. To the best of our knowledge, no current

root-cause analysis algorithm can scale to such granularity.

6 CONCLUSIONS
We identify a new type of SLO violation for web services, SWLT

in large-scale microservice platforms, which has a heavy-tail and

high-variance characterization. To diagnose root-causes of SWLT,

we propose an unsupervised and low-cost algorithm–ϵ-Diagnosis,
using two samples test algorithm based on ϵ-statistics. We develop

and deploy the root-cause diagnosis system in the microservice

platforms to help identify the potential root-causes of SWLT from

millions of metrics for tens of thousands of web services. Through

evaluating with real-production datasets, we show that ϵ-Diagnosis
can outperform other time-series distance based root-cause analysis

algorithms in finding all the actual root-cause metrics of SWLT

with highest confidence level.

REFERENCES
[1] Salman A Baset. 2012. Cloud SLAs: present and future. ACM Operating Systems

Review (2012).

[2] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard, and Hans

Andersen. 2010. Fingerprinting the datacenter: automated classification of perfor-

mance crises. In Proceedings of the 5th European conference on Computer systems.
ACM, 111–124.

[3] Valeria Cardellini, Emiliano Casalicchio, Francesco Lo Presti, and Luca Silvestri.

2011. Sla-aware resource management for application service providers in the

cloud. In Network Cloud Computing and Applications (NCCA), 2011 First Interna-
tional Symposium on. IEEE, 20–27.

[4] Anupam Chanda, Alan L Cox, and Willy Zwaenepoel. 2007. Whodunit: Trans-

actional profiling for multi-tier applications. In ACM SIGOPS Operating Systems
Review, Vol. 41. ACM, 17–30.

[5] Yen-Yang Michael Chen, Anthony J Accardi, Emre Kiciman, David A Patter-

son, Armando Fox, and Eric A Brewer. 2004. Path-based failure and evolution

management. (2004).

[6] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and

Armando Fox. 2005. Capturing, indexing, clustering, and retrieving system

history. In ACM SIGOPS Operating Systems Review, Vol. 39. ACM, 105–118.

[7] Kristal Curtis, Peter Bodík, Michael Armbrust, Armando Fox, Mike Franklin,

Michael Jordan, and David Patterson. 2010. Determining SLO Violations at Compile
Time.

[8] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM
(2013).

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.

In ACM SIGOPS operating systems review, Vol. 41. ACM, 205–220.

[10] Pamela Delgado, Diego Didona, Florin Dinu, andWilly Zwaenepoel. 2018. Kairos:

Preemptive Data Center Scheduling Without Runtime Estimates. In ACM SoCC.
[11] Songyun Duan and Shivnath Babu. 2008. Guided problem diagnosis through

active learning. In Autonomic Computing, 2008. ICAC’08. International Conference
on. IEEE, 45–54.

[12] Hector Fernandez, Corina Stratan, and Guillaume Pierre. 2014. Robust perfor-

mance control for web applications in the cloud. In 4th International Conference
on Cloud Computing and Services Science.

[13] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. 2008. Quanto: Track-

ing Energy in Networked Embedded Systems.. In OSDI, Vol. 8. 323–338.
[14] Rodrigo Fonseca, Michael J Freedman, and George Porter. 2010. Experiences

with Tracing Causality in Networked Services. INM/WREN 10 (2010), 10–10.

[15] Jerome H Friedman and Lawrence C Rafsky. 1979. Multivariate generalizations

of the Wald-Wolfowitz and Smirnov two-sample tests. The Annals of Statistics
(1979), 697–717.

[16] Jerome H Friedman, Lawrence C Rafsky, et al. 1983. Graph-theoretic measures

of multivariate association and prediction. The Annals of Statistics 11, 2 (1983),
377–391.

[17] Tak-chung Fu. 2011. A review on time series datamining. Engineering Applications
of Artificial Intelligence 24, 1 (2011), 164–181.

[18] Anshul Gandhi, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish Marwah.

2011. Minimizing data center SLA violations and power consumption via hybrid

resource provisioning. In Green Computing Conference and Workshops (IGCC),
2011 International. IEEE, 1–8.

[19] Anshul Gandhi, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish Marwah.

2012. Hybrid resource provisioning for minimizing data center SLA violations

and power consumption. Sustainable Computing: Informatics and Systems 2, 2
(2012), 91–104.

[20] Liu Haifeng, Jinjun Zhang, Huasong Shan, Min Li, Yuan Chen, Xiaofeng He, and

Xiaowei Li. 2019. JCallGraph: Tracing Microservices at Massive Scale at JD.com.

In Cloud Computing (CLOUD), the 2019 International Conference on.
[21] Vikas Jaiman, Sonia BenMokhtar, Vivien Quéma, Lydia Chen, and Etienne Rivìere.

2018. Héron: Taming Tail Latencies in Key-Value Stores under Heterogeneous

Workloads. In International Symposium on Reliable Distributed Systems (SRDS)
2018.

[22] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-

dictable message latency in the cloud. In ACM SIGCOMM Computer Communica-
tion Review, Vol. 45. ACM, 435–448.

[23] Soila P Kavulya, Scott Daniels, Kaustubh Joshi, Matti Hiltunen, Rajeev Gandhi,

and Priya Narasimhan. 2012. Draco: Statistical diagnosis of chronic problems in

large distributed systems. In Dependable Systems and Networks (DSN), 2012 42nd
Annual IEEE/IFIP International Conference on. IEEE, 1–12.

[24] Charles Edwin Killian, James W Anderson, Ryan Braud, Ranjit Jhala, and Amin M

Vahdat. 2007. Mace: language support for building distributed systems. In ACM
SIGPLAN Notices, Vol. 42. ACM, 179–188.

[25] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. 2015. Heracles: Improving resource efficiency at scale. In

ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450–462.

[26] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang,

and Zhe Wang. 2014. Correlating events with time series for incident diagnosis.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1583–1592.

[27] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015.

Retro: Targeted Resource Management in Multi-tenant Distributed Systems.. In

NSDI. 589–603.
[28] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing: Dynamic

causal monitoring for distributed systems. In Proceedings of the 25th Symposium
on Operating Systems Principles. ACM, 378–393.

[29] Aniket Mahanti, Niklas Carlsson, Anirban Mahanti, Martin Arlitt, and Carey

Williamson. 2013. A tale of the tails: Power-laws in internet measurements. IEEE
Network 27, 1 (2013), 59–64.

[30] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar.

2009. Comprehensive qos monitoring of web services and event-based sla viola-

tion detection. In Proceedings of the 4th international workshop on middleware for
service oriented computing. ACM, 1–6.

[31] Anders Odén, Hans Wedel, et al. 1975. Arguments for Fisher’s permutation test.

The Annals of Statistics 3, 2 (1975), 518–520.
[32] Fábio Oliveira, Sahil Suneja, Shripad Nadgowda, Priya Nagpurkar, and Canturk

Isci. 2017. Opvis: extensible, cross-platform operational visibility and analytics

for cloud. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference:
Industrial Track. ACM, 43–49.

[33] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin

Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory

time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827.
[34] Patrick Reynolds, Charles Edwin Killian, Janet LWiener, Jeffrey CMogul, Mehul A

Shah, and Amin Vahdat. 2006. Pip: Detecting the Unexpected in Distributed

Systems.. In NSDI, Vol. 6. 9–9.
[35] Raja R Sambasivan, Alice X Zheng, Michael De Rosa, Elie Krevat, Spencer Whit-

man, Michael Stroucken, William Wang, Lianghong Xu, and Gregory R Ganger.

2011. Diagnosing Performance Changes by Comparing Request Flows.. In NSDI,
Vol. 5. 1–1.

[36] Howard J Seltman. 2012. Experimental design and analysis. Online at: http://www.
stat. cmu. edu/, hseltman/309/Book/Book. pdf (2012).

[37] Huasong Shan, Qingyang Wang, and Calton Pu. 2017. Tail attacks on web

applications. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1725–1739.

[38] Huasong Shan, Qingyang Wang, and Qiben Yan. 2017. Very Short Intermittent

DDoS Attacks in an Unsaturated System. In International Conference on Security
and Privacy in Communication Systems. Springer, 45–66.

[39] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj

Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
large-scale distributed systems tracing infrastructure. Technical Report. Technical
report, Google, Inc.

[40] Kesar Singh and Minge Xie. 2008. Bootstrap: a statistical method. Unpublished
manuscript, Rutgers University, USA. Retrieved from http://www. stat. rutgers.
edu/home/mxie/RCPapers/bootstrap. pdf (2008).

[41] Marc Solé, Victor Muntés-Mulero, Annie Ibrahim Rana, and Giovani Estrada.

2017. Survey on models and techniques for root-cause analysis. arXiv preprint
arXiv:1701.08546 (2017).

[42] GJ Székely. 2003. E-Statistics: The energy of statistical samples. Bowling Green
State University, Department of Mathematics and Statistics Technical Report 3, 05
(2003), 1–18.

[43] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia,

Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve:

actionable insights from monitored metrics in distributed systems. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. ACM, 14–27.

[44] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware

datacenter tcp (d2tcp). ACM SIGCOMM Computer Communication Review 42, 4

(2012), 115–126.

[45] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi

Kothari. 2009. Server workload analysis for power minimization using consolida-

tion. In Proceedings of the 2009 conference on USENIX Annual technical conference.
USENIX Association, 28–28.

[46] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,

Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. 2018. Unsupervised Anomaly

Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications.

In Proceedings of the 2018 World Wide Web Conference on World Wide Web. Inter-
national World Wide Web Conferences Steering Committee, 187–196.

[47] Shungeng Zhang, Huasong Shan, Qingyang Wang, Jianshu Liu, Qiben Yan, and

Jinpeng Wei. 2019. Tail Amplification in n-Tier Systems: A Study of Transient

Cross-Resource Contention Attacks. In ICDCS.
[48] Timothy Zhu, Daniel S Berger, and Mor Harchol-Balter. 2016. SNC-Meister:

Admitting more tenants with tail latency SLOs. In Proceedings of the Seventh ACM
Symposium on Cloud Computing. ACM, 374–387.

[49] Timothy Zhu, Alexey Tumanov, Michael A Kozuch, Mor Harchol-Balter, and

Gregory R Ganger. 2014. Prioritymeister: Tail latency qos for shared networked

storage. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1–14.

	Abstract
	1 Introduction
	2 Small-window Tail latency
	3 -Diagnosis SWLT
	4 Evaluations
	4.1 Operational Data in Real-production
	4.2 Performance of Algorithms

	5 Related Work
	6 Conclusions
	References

