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Abstract. We present a new class of low-volume application layer DDoS
attack–Very Short Intermittent DDoS (VSI-DDoS). Such attack sends
intermittent bursts (tens of milliseconds duration) of legitimate HTTP
requests to the target website with the goal of degrading the quality
of service (QoS) of the system and damaging the long-term business of
the service provider. VSI-DDoS attacks can be especially stealthy since
they can significantly impair the target system performance while the
average usage rate of all the system resources is at a moderate level,
making it hard to pinpoint the root-cause of performance degradation.
We develop a framework to effectively launch VSI-DDoS attacks, which
includes three phases: the profiling phase in which appropriate HTTP
requests are selected to launch the attack, the training phase in which
a typical Service Level Agreement (e.g., 95th percentile response time
<1 s) is used to train the attack parameters, and the attacking phase
in which attacking scripts are generated and deployed to distributed
bots to launch the actual attack. To evaluate such VSI-DDoS attacks,
we conduct extensive experiments using a representative benchmark web
application under realistic cloud scaling settings and equipped with some
popular state-of-the-art IDS/IPS systems (e.g., Snort), and find that our
attacks are able to effectively cause the long-tail latency problem of the
benchmark website while escaping the radar of those DDoS defense tools.

Keywords: Long-tail latency · Performance bottleneck
n-tier systems · Pulsating attack · Web attack · DDoS attack

1 Introduction

Distributed Denial-of-Service (DDoS) attacks for Internet services such as social
networks and e-commerce are increasing in sophistication and scale. Kaspersky
Lab’s “DDoS Intelligence Report Q1 2017” [4] reports that the trend of DDoS
attacks has been increasing despite numerous DDoS defense mechanisms. One
important reason of the increasing popularity of DDoS attacks is due to the
ever-evolving new types of DDoS attacks that exploit various newly discovered
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network or system vulnerabilities, bypassing the state-of-the-art defense mecha-
nisms [30,38]. The damage that these DDoS attacks cause to enterprise organi-
zations is well-known, and includes both monetary (e.g., $40,000 per hour) and
customer trust losses [15]. Therefore, for guarding these Internet services, it is
very important to detect, prevent and mitigate various emerging DDoS attacks.

In this work, we present a new low-volume application-layer DDoS attack
called Very Short Intermittent DDoS (VSI-DDoS). A VSI-DDoS attacker sends
intermittent bursts of carefully chosen legitimate HTTP requests to the target
system, with the aim of creating “Unsaturated DoS”, where the denial of service
can successfully last for short periods of time (i.e., hundreds of milliseconds).
VSI-DDoS attacks are not to bring down the system as traditional flooding DDoS
attacks do, but rather to degrade the quality of service by causing frequent and
sometimes intolerable delays for legitimate users, which will eventually damage
the long-term business goal of the target system. For example, given that modern
web applications care more about the tail latency than the average latency [12]
(e.g., Google requires 99% of its web-search to finish within 0.5 s [13]), a long-tail
latency (e.g., 95th percentile response time >1 s) caused by a VSI-DDoS attack
can significantly affect the target website’s business and reputation.

Compared to previous research on network-layer pulsating DDoS attacks [17,
18,22,23,25,27], VSI-DDoS is a type of application-layer DDoS attacks, with
even lower level of traceability and better stealthiness. Unlike the network-layer
pulsating attacks which intend to temporarily saturate the bandwidth of net-
work links that connect to the target system, VSI-DDoS attacks aim to create
very short saturations of the bottleneck resource (usually in CPU or disk I/O)
inside the target system, which we refer to as very short bottlenecks (VSBs) and
typically require much less amount of attack traffic to trigger them. Less amount
of attack traffic leads to a higher level of stealthiness. In addition, a VSI-DDoS
attack adopts legitimate HTTP requests, which can easily penetrate the defense
mechanisms adopted by CDNs, network routers or switches in the path to the
target system, thereby reducing the detection surface.

To effectively mount VSI-DDoS attacks, we should fully understand the trig-
gering conditions of VSBs inside the target system, and quantify their long-term
damages on the overall system performance. We develop a three-phase frame-
work to tackle these challenges, which involves profiling, training, and attacking.
Specifically, in the profiling phase we profile all the HTTP requests supported
by the target website and select a set of appropriate ones to launch the attack.
We find that heavy requests (e.g., the request with long service time consum-
ing more bottleneck resource in the target web system) can achieve significantly
better attack efficiency than light requests; only a small burst of heavy requests
are needed to trigger VSBs of the target system, reducing the cost of an effective
attack. In the training phase we use a typical Service Level Agreement (e.g., 95th

percentile response time <1 s) for most e-commerce websites as an evaluation
metric to train the key parameters of an effective VSI-DDoS attack, including
burst volume, length, and interval. We find that an appropriate combination of
these parameters not only achieves high attacking efficiency, but also escapes
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the radar of the most popular state-of-the-art DDoS defense tools, which further
validates the stealthiness of the proposed attack.

In summary, the main two contributions of this work are:

– We present a novel low-volume application-layer VSI-DDoS attack that can
broadly threaten a wide range of web applications in a stealthy manner. Unlike
the traditional brute-force DoS attacks or pulsating attacks which focus on
network bandwidth, VSI-DDoS attacks target the bottleneck resource of the
target web system using legitimate HTTP requests, thereby reducing the cost
of an effective attack while keeping the attack highly stealthy.

– We develop a three-phase framework via an empirical approach that is able
to efficiently launch VSI-DDoS attacks against a target web application.
Through a representative web application benchmark under realistic cloud
scaling settings and equipped with the most popular state-of-the-art DDoS
defense tools, we validate the practicality of our attacking framework.

Through our evaluation of VSI-DDoS attacks under realistic cloud scaling
settings and IDS/IPS systems, we confirm that the proposed attacks not only
bypass the triggering conditions of the cloud scaling but also invalidate capacity-
based threshold monitoring and detection. We further explore two more potential
solutions to VSI-DDoS attacks: fine-grained VSBs detection and user behavior
model validation, and discuss their strengths and weaknesses in practice.

The remainder of this paper is organized as follows. Section 2 presents the
origin and motivation of VSI-DDoS attacks. Section 3 describes the definition of
VSI-DDoS attacks, and the design of the VSI-DDoS attack framework. Section 4
evaluates the effectiveness and stealthiness of our attacks. Section 5 discusses
some countermeasures and future work. Section 6 presents the related work and
Sect. 7 concludes the paper.

2 Background and Motivations

2.1 Origin of VSI-DDoS Attacks

VSI-DDoS attacks originate from the new phenomenon of very short bottlenecks
(VSBs), also called transient bottlenecks in recent performance analysis of Inter-
net services deployed in Cloud environments [35,36]. In these previous studies
VSBs have been identified as one of the main sources for the puzzling perfor-
mance anomalies of the cloud-host web applications even though the system is
far from saturation. From time to time cloud practitioners have reported that
n-tier web applications produce very long response time (VLRT) requests on
the order of several seconds, when the system average utilization is only about
50–60%. The VLRT requests themselves do not contain bugs, since the same
requests return within tens of milliseconds when no bottleneck exists in the tar-
get system. The reason why VSBs can turn these normal short requests into
VLRT requests is because VSBs can cause a large number of requests to queue
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in the system within a very short time. Due to some system level concurrency
constrains (e.g., limited threads) of component servers, additional requests that
exceed the concurrency limit of any component server will be dropped, causing
TCP retransmissions (minimum time-out is 1 s [19]). The requests encountered
TCP retransmissions become VLRT requests perceived by the end users.

While most of previous studies focus on VSBs caused by internal system level
factors such as Java garbage collection, CPU Dynamic Voltage and Frequency
Scaling (DVFS), interference of collocated virtual machines, this newly identified
system vulnerability (VSBs) also motivates us to study the hypothetical VSI-
DDoS attacks. Our hypothesis is that the external burst of legitimate HTTP
requests can cause erratic fluctuation of resource consumption to be injected into
the target system and cause VSBs in the weakest node of the whole distributed
system, which in turn cause queue overflow and VLRT requests resulting from
TCP retransmissions. Such VSI-DDoS attacks can potentially impose significant
threats on current cyber infrastructures while remaining stealthy under the radar
of state-of-the-art DDoS defense mechanisms and IDS/IPS systems.

2.2 Importance of Tail Latency

In web applications such as e-commerce, rapid responsiveness is vital for ser-
vice providers’ reputation and business. For example, Google requires 99% of
its web-search to finish within 0.5 s [13]; Amazon reported that an every 100 ms
increase in the web-page load reduces sales by 1% [24]. In practice, the tail
latency, instead of the average latency, is of special concern for mission-critical
web-facing applications [12–14,20]. In shared infrastructures such as cloud envi-
ronments, service level agreements (SLAs) are commonly used for specifying
desirable response times, typically within one or two seconds [12]. In this case,
only requests with response time within the specified threshold have a posi-
tive impact to service providers’ business, and the requests with long response
time (beyond the threshold), not only waste network and system resources, but
also cause penalties (negative impact in revenue) to the business of the service
provider. In general, 99th, 98th, and 95th percentile response time are represen-
tative metrics to measure the performance of web applications [12,26]. In this
paper, we also use percentile response time as the evaluation metric to measure
the effectiveness of an adversary’s VSI-DDoS attacks.

2.3 Measured Long-Tail Latency Caused by VSI-DDoS Attacks

Here, we show the impact of VSI-DDoS attacks through concrete benchmark
results. The benefit of benchmark experiments is to have a fully controlled sys-
tem, which enables a detailed study about how the target system behaves when
it is under a VSI-DDoS attack. The design of the VSI-DDoS attack framework
and the real production setting evaluation are in Sects. 3 and 4, respectively.
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HTTP
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Fig. 1. Experimental sample topology

Fig. 2. Measured performance of the benchmark application under a VSI-DDoS attack.
Bursts of attacking HTTP requests (a) trigger VSBs in the bottom-most MySQL of
the system (b), which cause requests to queue from local to the front-most Apache
(c). Queue-overflows occur in Apache, causing TCP retransmissions and long response
time requests (d). (Color figure online)
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Fig. 3. Resource utilization of each server in the system under the VSI-DDoS Attack.
Metrics are measured using vmstat at every 1 s. (a) and (b) show that both CPU and
network bandwidth are not saturated. Utilization of other resources (e.g., memory) are
omitted since they are far from saturation.

Benchmark Measurements. We use RUBBoS [6], a representative n-tier web
application benchmark modeling the popular news forum website such as Slash-
dot. In Fig. 1, we show the basic configuration for RUBBoS using the typical
3-tier architecture, with 1 Apache web server, 1 Tomcat application Server, and
1 MySQL database server deployed in an academic cloud platform (more details
of experimental setup in Sect. 4.1). RUBBoS can emulate the behavior of legiti-
mate users to surf the website. Each user follows a Markov chain model to navi-
gate among different webpages, with averagely 7-s think time between receiving
a web page and submitting a new page request. On the other hand, we adopt
Apache Bench to send intermittent bursts of carefully chosen legitimate HTTP
requests; each burst is injected within a very short time window (e.g., 50 ms).

The mechanism of how VSI-DDoS attacks impact the performance of the tar-
get n-tier web system can only be seen using fine-grained monitoring. Figure 2
shows such an analysis when the target 3-tier benchmark website serving 3000
legitimate users is under a VSI-DDoS attack. All the metrics in the subfigures
are measured at every 50 ms time window. Figure 2a shows that the burst of
attacking requests occurs in every 2 s. Each burst contains about 250 legitimate
HTTP requests supported by the benchmark website within a 50 ms time win-
dow. The bursts of attack requests cause transient CPU saturations of MySQL
in Fig. 2b. These transient CPU saturations create VSBs and cause requests to
queue in MySQL; MySQL local queue soon fills up (at 0.5 s, 2.5 s, 4.5 s, and
6.5 s), pushing requests to queue in upstream Tomcat and Apache in Fig. 2c. We
call this phenomenon as push-back wave. Once the queued requests in the front-
most Apache exceed its queue limit (180 in our configuration), new requests from
legitimate users will be dropped, leading to TCP retransmissions and very long
response time (VLRT) requests as we observed in Fig. 2d.
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Fig. 4. Percentile response time of the sys-
tem serving 3000 legitimate users with-
out and with the attack. The 95th per-
centile response time under attack is >1 s,
clearly showing the long-tail latency prob-
lem caused by the VSI-DDoS attack. (Color
figure online)

We also find that the VSBs can-
not be observed by our normal system
monitoring tools (e.g., sar, vmstat,
top) with the typical 1-s monitor-
ing granularity. Figure 3a shows that
the CPU utilization of each server in
the system is not saturated all the
time using vmstat during the 8-s VSI-
DDoS attacking period. Figure 3b
shows the outgoing/incoming network
traffic of Apache is at very low rate
(<10 MBps). We omit the graphs of
resource utilization of other resources
(e.g., memory, disk I/O) since all of
them are far from saturation. Given
such monitoring data, it is difficult
for system administrators to trace the
cause of the performance problem.

To illustrate the negative impact of the VSI-DDoS attack, we compare the
percentile response time serving 3000 concurrent legitimate users by the target
system under attack and without-attack in Fig. 4. The percentile response time
of the system under attack (the red line) uses the same dataset in Fig. 2. This
figure shows that all the requests finish within 200 ms without attack (the black
line). However, in the attacking scenario, the 95th percentile response time of the
target system already exceeds 1 s, clearly showing the long-tail latency problem
caused by the VSI-DDoS attack. Such long-tail latency problem is regarded
as severe performance issue by most web applications, especially modern
e-commerce (e.g., Amazon), as we have introduced in Sect. 2.2.

3 VSI-DDoS Attacks

In this section, we first formally present the adversary’s goal of VSI-DDoS attacks
and then discuss the key technical challenges of effectively launching VSI-DDoS
attacks.

3.1 Goals and Assumptions

In a VSI-DDoS attack scenario the adversary is to create frequent VSBs in the
target web system by sending intermittent bursts of legitimate HTTP requests
to the target system without being detected. So the goal of VSI-DDoS attacks is
not to bring the system down as traditional flooding DDoS attacks do, but rather
to degrade the quality of service by causing frequent and sometimes intolerable
delays for the legitimate users, which will eventually damage the business of the
target system in the long run. Such attacks are stealthy because the target web
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system is in an “unsaturated state”; the duration of each created VSB is very
short (e.g., 50 ms), which can easily escape the detection of normal monitoring
tools adopting coarse granularity statistical analysis (e.g., seconds or minutes).

Fig. 5. An illustration of a VSI-DDoS attack, which consists of burst volume V of
HTTP requests, burst length L, and burst interval I.

To effectively launch a VSI-DDoS attack, we assume that all the bots under
control are coordinated and synchronized so that requests generated by these
bots can reach the target web application at the same time or within a very short
timeframe. This assumption is reasonable because many previous research efforts
already provide solutions, using either centralized [17,33,39] or decentralized
methods [23], to coordinate bots to send synchronized traffic and cause network
congestion at a specific link. Our focus in this paper is how to create frequent
bursts of attacking but legitimate HTTP requests that can effectively trigger
VSBs in the target system, causing long-tail latency of the target web system
while avoiding being detected. We formally propose VSI-DDoS attacks as follows
(Fig. 5):

Effect = A(V,L, I) (1)

where,

– Effect is the measure of attacking effectiveness; we use percentile response
time as a metric to measure the tail latency of the target web system (e.g.,
95th percentile response time >1 s). Effect is a function of V , L, I.

– V is the number (volume) of attack requests per burst. V should be large
enough to temporarily saturate the bottleneck resource in the target system
and trigger VSBs. At the same time, V should be small enough to bypass the
state-of-the-art threshold-based detection tools [30,38].

– L is the length of each burst. The total requests per burst V will be sent
out during the period L. Thus the instant request rate to the target website
during a burst period is V /L. L should be short enough to guarantee high
instant request rate to trigger VSBs in the target system. Contrarily, too short
L will cause large portion of attack requests dropped by the target system
due to instant queue overflow (too high V /L), without causing any damage
to the target system performance.
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– I is the time interval between every two consecutive bursts. I infers the fre-
quency of bursts of HTTP requests to the target system. I should be short
enough so that the attacker can generate bursts of HTTP request frequent
enough to cause significant performance damage on the target system. On the
other hand, too short I makes the attack similar to the traditional flooding
DDoS attacks, which can be easily detected.

We note that all the three components need to be carefully coordinated
and tuned in order to launch an effective VSI-DDoS attack. To evaluate the
effectiveness of such an attack, we measure the tail latency of the target website.
We assume that the attack achieves its goal if the measured percentile response
time under attack exceeds the predefined threshold, which depends on the SLAs
of the target website. Based on this evaluation criteria, we develop an attacking
framework which is able to estimate an optimal value of each parameter using an
empirical approach for an effective VSI-DDoS attack in the following subsection.

Fig. 6. VSI-DDoS attacks framework

3.2 VSI-DDoS Attack Framework

The proposed VSI-DDoS attack framework contains three phases: profiling,
training, and attacking (Fig. 6). The profiling and training phases are to deter-
mine the three parameters of a VSI-DDoS attack. The attacking phase generates
and deploys attacking scripts to distributed bots and launches the actual attack.

Profiling Phase. This phase selects appropriate types of HTTP requests for
attacking in order to create VSBs in the target website with the minimum
cost, meaning the least number of attacking requests for each burst. This phase
includes the following three steps.
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(1) Scanning the supported HTTP requests. To select appropriate HTTP
requests, one challenge is to retrieve representative HTTP requests that cover
all the transaction types supported by the target website, including both static
and GET/POST dynamic requests. Although the requests for static content of a
website are easy to retrieve by using some crawling tools (e.g., scrapy), requests
for dynamic content are more difficult to get. This is because POST requests are
sent out by submitting forms (content is in the body section of a HTTP request),
not through the direct URLs. To solve this issue, we adopt a script-based open
source web browser PhantomJS to retrieve and analyze the form tags inside the
HTTP response for every HTTP request. After the attacker provides some ini-
tial values for associated input boxes (e.g., user-name and password) inside each
form, PhantomJS can submit POST requests automatically. PhantomJS also
supports cookies which allows an attacker to conduct consecutive interactions
with some websites (e.g., Facebook) which require user login before further web-
site navigation. POST requests are important types of attack requests because
they can penetrate Content Delivery Networks (CDN) and attack the original
target website. CDNs are widely used by websites nowadays to improve the web-
site performance by caching static content. Since POST requests are dynamic
requests which typically require to retrieve/write dynamic information from/to
the back-end database, current CDN vendors usually do not support caching
responses for POST requests [29]. Thus POST requests are natural candidates
to launch effective VSI-DDoS attacks for websites with CDN support.

(2) Identifying heavy requests using service time. Once we get enough
supported HTTP requests, the next challenge is to decide which requests con-
sume more bottleneck resource (e.g., Database CPU) of the target web system
than the others. We term the requests heavily consuming the bottleneck resource
as heavy requests (e.g., POST requests), meanwhile, those consuming no or little
bottleneck resource as light requests (e.g., static requests). In this case, heavy
requests are natural candidates to launch a VSI-DDoS attack because a fewer
number of them are needed to trigger VSBs in the target web system than that
of light requests. A low number of attacking requests per burst also make the
attack stealthy because of the low volume of network traffic. The key question
is how do we determine which requests are heavy and which are light?

We use the service time of each type of HTTP requests as a key metric to
distinguish the heavy requests from the light ones. Service time of a HTTP
request is the time serving the request by the target web system without any
queuing delay. Previous research results [35] show that the predominant part of
the service time of a request is spent on the bottleneck resource in the system.
When the target system is at low utilization1, service time can be estimated to
be the end-to-end response time of a request subtracting the network latency
between the client and the target web application. The end-to-end response time
of a HTTP request can be easily recorded using Apache Bench or PhantomJS.

1 Low utilization is to rule out the queueing effect inside the target system.
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Lots of tools can be used to measure the network latency (e.g., the ping com-
mand). We measure the service time of each type of HTTP requests multiple
times and employ the average in order to mitigate influence of network latency
variation.

(3) Selecting candidate requests. A naive strategy to select candidate attack-
ing requests is always choosing the heaviest type of requests. In this case, the
attacker can use the minimum number of requests per burst to create VSBs in
the target web system. However, single type of attacking requests in a VSI-DDoS
attack has the risk to be identified as abnormal by existing DDoS defense tools
using statistical analysis. For example, the defense tool may simply aggregate all
the requests sent out from the same IP and identify that some IPs only send one
type of HTTP requests, which is highly suspicious. To bypass such statistics-
based detection mechanisms [7], an attacker can select a set of top-ranked heavy
requests, which can achieve the same attacking goal with slightly increased cost.
Some more advanced defense mechanisms use machine-learning based techniques
to learn a legitimate user behavior model [32] and infer suspicions requests if the
sequence or the transition probability among them significantly deviates from
the model (judging based on pre-defined thresholds). In this case the attacker
needs to select candidate requests more carefully to make sure that the sequence
of HTTP requests sent from a bot is feasible for a legitimate user. We will discuss
this in more detail in Sect. 5.

Training Phase. This phase is to train the key parameters (V , L, and I) of an
effective VSI-DDoS attack that meets the adversary’s goal (e.g., 95th percentile
response time >1 s).

(1) Training volume. The technical objective of a VSI-DDoS attack is to cre-
ate frequent VSBs in the target web system. Thus a key challenge of VSI-DDoS
attacks is to determine whether a batch of attacking requests are able to create
a VSB in the target system or not. In most cases the attacker has no privi-
lege to monitor the resource utilization of the target system. Thus the attacker
cannot depend on internal resource monitoring to determine the occurrence of
VSBs. However, we know that the occurrence of a VSB will create temporary
request congestion inside the target system; once the queued requests exceed any
system-level queue capacity (e.g., thread pool size), new arriving requests will be
dropped and TCP retransmissions (minimum time-out is 1 s) will happen, lead-
ing to long response time perceived by the end users (see Fig. 2). In this case,
long response time caused by queue-overflow and TCP retransmissions can be
treated as a signal of the occurrence of VSBs. Given such an idea, a VSI-DDoS
attacker can gradually increase the volume of the attacking requests per batch
until the observation of requests with abnormally long response time.
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Fig. 7. Training the lower bound of volume for an effective VSI-DDoS attack for our
RUBBoS benchmark application. We increase the volume of attacking requests per
burst step by step until we observe abnormally long response time of requests sent
from legitimate users (see Fig. 7b).
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Fig. 8. Impact of volume V per burst. This
figure shows the percentile response time of
the target system (serving 3000 legitimate
clients) gets more damages as the attack
volume per burst V increases from 100 to
550 (fixing L = 50ms, I = 7 s).

The minimum volume per burst
that triggers the long response time
requests due to TCP retransmis-
sions is the lower bound Vmin for
the selected attack requests. Figure 7
shows the process of training Vmin

for an effective VSI-DDoS attack for
our RUBBoS website, which is serv-
ing 3000 legitimate users. When burst
volume is only 20, the response time
perceived by all legitimate users is
lower than 250 ms in Fig. 7a. We
increase burst volume step by step
(e.g., 10 or 20) until we observe the
requests sent from legitimate users
experience abnormally long response
time in Fig. 7b. The distinct two-
modal response time distribution indicates that 100 reaches the lower bound.
In practice we set the volume higher than Vmin to guarantee the successful trig-
gering of VSBs in the target system and achieve better attack result as shown
in Fig. 8. On the other hand, the volume should not be too high otherwise it
will trigger the alarm of defense tools (e.g., Snort [7]) deployed in the target web
system. We can increase the number of bots and reduce the number of attack
requests per bot to bypass the state-of-the-art detection mechanisms.

(2) Training burst length. A good burst length L should maximize the impact
of the burst of attacking requests on the requests sent from legitimate users. We
observed that the best L should be the service time of the selected attack-
ing requests. A HTTP request that originates from a client arrives at the web
server, which distributes it among the application servers, which in turn ask the
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database to execute the query. Due to the RPC-style synchronous communica-
tion between consecutive tiers, the processing threads and other associate soft
resources such as database connections of a component server will be occupied
until all the activities in the downstream tiers are done. In order to create the
most soft resource consumption, the burst of attacking requests should arrive
within the service time of the attacking requests. In this case, all the attacking
requests will stay in the target system before any of them finishes processing
and leaves the system. Once any of soft resources in any tier of the system are
exhausted, new requests from legitimate users will be dropped, leading to long
response time requests resulting from TCP retransmissions.
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Fig. 9. Impact of the length L per burst.
The biggest attacking damage (serving
3000 legitimate clients, and fixing V = 200,
I = 7 s) appears when L is 50 ms; the
more the burst length deviates from 50ms,
the weaker the damage caused by the VSI-
DDoS attack is.

Figure 9 shows the impact of the
burst length L on the tail latency
of our RUBBoS website. We choose
the heavy request “ViewStory” as the
attacking requests. The service time
of such heavy request is about 50 ms.
Note that the biggest attacking dam-
age appears when L is 50 ms. Too
short L leads to low effectiveness for
the attacking burst, since most of the
attacking requests will be dropped
due to sudden queue-overflow2, with-
out causing any harm to the requests
from legitimate users. On the other
hand, too long L (e.g., the L = 800ms
case) leads to low instant request rate
(V/L), which may not be able to cre-
ate VSBs in the target system and
lead to inferior attacking results.

(3) Training interval between bursts. By determining V and L of each burst
we can make sure one burst is able to trigger a VSB in the target system. The
final goal of a VSI-DDoS attack is to create the long-tail latency problem of the
target web system. Too small interval between bursts makes it similar as the
traditional flooding DDoS attack, thus can be easily detected. Too large interval
creates insufficient number of VSBs in the target web system, thus unable to
achieve the adversary’s goal. To select a reasonable interval, we start from a
relatively large interval and gradually reduce the interval until the measured tail
latency meets the adversary’s goal. Figure 10 shows such a process of selecting
a reasonable interval for our RUBBoS benchmark. To avoid an obvious burst
pattern of attacking requests, the interval between consecutive bursts is not nec-
essarily assigned with a fixed value. A VSI-DDoS attacker can design the interval
with a random variable following certain statistical distributions, with the mean

2 Short L leads to high instant request rate V/L, OS kernel may not be able to handle
packets promptly due to high overhead of interrupt handling [18].
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to be similar to a normal user’s think time between consecutive requests. Figure 2
in Sect. 2.3 is such an example. The interval between attack bursts follows a nor-
mal distribution with the mean of 2 s.
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Fig. 10. Impact of the interval I between
bursts. This figure shows the percentile
response time of the system (serving 3000
legitimate clients) gets more damages as we
decreases I from 30 s to 5 s (fixing V = 200,
L = 50ms).

Attacking Phase. This phase is
to launch the real VSI-DDoS attack
based on the previous profiling and
training results of V , L, I for request
bursts. Attackers launch the attack by
leveraging the resources of multiple
hosts, especially Botnet. We note that
an attacker should use a probe to con-
tinuously monitor the performance of
the target website, for example, send a
sequence of very light HTTP requests
(e.g., html) at regular intervals and
check the response time distribution.
The profiling and training phase need
to redo once the attacking results can-
not meet the adversary’s goal due to
the change of baseline workload or
system state (e.g., dataset size change).

4 Evaluation

4.1 VSI-DDoS Attacks Under Cloud Scaling

To evaluate the effectiveness of our VSI-DDoS attacks in the real produc-
tion settings, we deploy RUBBoS in a popular NSF sponsored cloud platform-
Cloudlab [5].

Experiment Methodology. In the real production environment, once admin-
istrators pinpoint the performance bottleneck of an n-tier system, they can solve
the issue by scaling the bottleneck tier. One policy is scaling up (updating the
hardware of the bottleneck tier), and the other is scaling out (adding more
machines/virtual machines to the bottleneck tier). For example, Amazon Auto
Scaling [1] can scale out EC2 instances as the demand of an application increases.
We evaluate our attack under both scaling settings. In our experiments, we
assume that the bottleneck is MySQL since the bottleneck typically takes place
in the database due to the high resource consumption of database operations.
To evaluate our attack under the cloud scaling settings, we keep all the software
configuration (e.g., queue size, DB connection pool size) the same to rule out
their impacts to our evaluation. In the scaling up case, we update the hard-
ware unit (1 CPU core and 1 GB Memory) of MySQL from 1 to 4 Units. In the
scaling out case, we increase the number of MySQL VMs from 1 to 4. All the
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Fig. 11. The required burst volume and the CPU utilization of MySQL in scaling
up/out scenarios while achieving our victim goal. Average CPU Usage decreases after
scaled, indicating the scaling mitigates the bottleneck. However, we can still get the
attacking goal by increasing burst volume.

VMs (Xen-based Emulab virtual nodes) are running CentOS 6.5 on 2.10 GHz
Intel Xeon E5-2450 processors. To maximize the impact of our attack, we set
the burst length as the service time of attack requests (e.g., 50 ms.), and set
the burst interval as 2 s. We conduct the attack experiments for 10 min in each
scenario since half of the DDoS attacks last longer than 10 min [31]. Our DDoS
bot farm in Fig. 1 consists of 8 machines, one serves as a centralized controller
that coordinates and synchronizes the other nodes to launch the attacks.

Results. Figure 11 depicts the required burst volume and the relevant usage
of the bottleneck resource at scaling up/out scenarios to achieve our attacking
goal. We can see the average CPU utilization of MySQL reduces from high load
(>80%) to moderate level (<50%) after the bottleneck tier is scaled, indicating
the scaling policies are effective since more CPU cores or VMs can mitigate
the impact of the bottleneck resource to the system performance. However, we
can still reach our attacking goal by increasing attacking volume per burst even
in a large scale scenario, since it requires higher burst volume to trigger VSBs
in the system after the capacity of the bottleneck tier increases. On the other
hand, increasing the attack requests by each bot obviously increases the risk of
detection by the target system, but we can coordinate more synchronized bots to
send higher volume per burst to achieve our attacking goal using decentralized
synchronization mechanism [23]. As such, we can still keep our attacks under
the radar of the state-of-the-art detection mechanism.

Remarks About Cloud Scaling. In real production clouds (e.g., Amazon
AWS), the users can customize some triggering conditions to instruct Amazon
Auto Scaling [1] to scale out/in instances in response to metrics (such as band-
width usage or CPU utilization) monitored by Amazon CloudWatch [2]. The
monitoring granularity of Amazon CloudWatch for premium users is 1 min [2].
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For example, the target system can add more VMs once the average CPU uti-
lization of all the instances exceeds 85% during a 1-min statistical period. From
Sampling Theory, our attack is hard to trigger the scaling plans sampling in
minutes level, since the VSBs usually occur in milliseconds level (more details
about monitoring granularity in Sect. 5). Large-scale web applications typically
adopt dynamic scaling strategy for better resource efficiency and load balancing,
VSI-DDoS attacks can avoid the triggering conditions of the cloud scaling, thus
we expect that the current cloud scaling techniques do not help resolving our
attacks.

4.2 VSI-DDoS Attacks Under Defense Tools

To validate the stealthiness of our attacks under the popular defense mechanisms,
we deploy some defense tools before the web tier in our RUBBoS environments.

Experiment Methodology. Snort is the most widely deployed network
anomaly detection system in the world that is acquired by Cisco Systems
on October 7, 2013, and widely used in practice for DDoS defense [7,8].
Snort.AD [9], extended based on Snort, is a threshold and statistics-based net-
work anomaly detection tool, which can analyze the network traffic based on
different protocols (UDP, TCP, HTTP, etc.) within a certain period. Here, we
take HTTP traffic as a representative metric in Snort.AD to evaluate whether
our attacks break through the cordon, since our attacking requests only involve
the HTTP packets. In the following experiments, we configure 2000 and 4000
concurrent legitimate users as the baseline for low and high background work-
load scenarios. We set 95th, 98th and 99th percentile response time (>1 s) as the
candidate attacking goals, and call them 95th, 98th, and 99th case hereinafter.
To achieve these different attacking goals, we fix the burst length as the service
time of the attacking requests and the burst interval as 2 s, and only tune the
burst volume ((250, 150, 100) and (150, 100, 50) for the 95th, 98th and 99th
case of 2000 and 4000 baseline, respectively). We conduct the experiments in a
10-min period for each scenario. We modify the code of Snort.AD to trace the
number of the HTTP incoming/outgoing packets in a minute interval and the
HTTP incoming/outgoing speed in terms of Mega Bytes per second, to evaluate
whether they exceed the threshold for these cases with different attacking goals
and background workload.

Alert Threshold Setting. How to set the alert threshold is a well-known
challenge for administrators [10,11]: a high threshold may not be able to detect
anomalies; a low threshold may incur a high number of false positive alarms
which an administer tries to avoid in practice. Typically, a widely-adopted set-
ting strategy [10,11] is to set the threshold of each monitoring metric based on
the capacity of the target system. Network security company [10] recommends
that the company‘s IT team should conduct the necessary performance tests to
determine the capacity, and set the threshold lower than the capacity to prevent
resource exhaustion (e.g., define the threshold when reaching 85% bottleneck
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Table 1. Measured HTTP traffic in the cases of 95th, 98th and 99th percentile response
time (>1 s) as candidate attacking goals. All of measured metrics are less than the
predefined thresholds set based on system capacity when the corresponding attacking
goal is achieved.

Metrics Threshold 2000 low load 4000 high load

95th 98th 99th B/L 95th 98th 99th B/L

In. packets (#/min) 299K 158K 119K 111K 99K 224K 214K 208K 201K

Out. packets (#/min) 349K 171K 134K 127K 116K 259K 249K 241K 233K

In. speed (MB/sec) 9.32 4.68 3.96 3.62 3.11 7.08 6.76 6.45 6.23

Out. speed (MB/sec) 17.83 7.62 6.83 6.48 5.94 12.78 12.46 12.12 11.89

In.: HTTP Incoming, Out.: HTTP Outgoing, B/L: Baseline

resource utilization of the web system). We also profile the capacity of the tar-
get system in our experimental environment under a worst-case scenario (when
serving 6000 concurrent users, the bottleneck resource, MySQL CPU utilization,
reaches 85%). In our experiments, we take this widely-adopted strategy to define
the alert threshold listed in Column 2 of Table 1 to capture our attacks.

Results. Table 1 lists the maximal HTTP incoming/outgoing packets and speed
under our attacks for the cases with different attacking goals and background
workload. All of the measured traffic metrics are in the moderate level and far
from the predefined threshold (based on system capacity) when the correspond-
ing attacking goal is achieved, indicating that our attacks create an “Unsaturated
illusion” for Snort. As a result, Snort reports no alert. More importantly, the
increased traffic due to our attacks is small compared to the baseline case, espe-
cially when the attacking goal is less aggressive (e.g., 99th percentile response
time >1 s). For example, an effective VSI-DDoS attack in the 99th case only
incurs 10% more traffic when the baseline workload is 2000, and 4% more traffic
when the baseline is 4000. This result also suggests that an effective VSI-DDoS
attack is easier to achieve as the background traffic increases.

Remarks About Threshold-Based Detection. The fundamental reason
that our attack (in milliseconds level) can invalidate the traditional threshold-
based detection tools (in seconds or minutes level) is their coarse monitoring
granularity. The coarse monitoring granularity is effective for identifying brute-
force DDoS attacks and flash crowds lasting for tens of seconds or minutes [21]
(detailed explanation in Sect. 6), but obviously too long to observe any abnor-
mal behaviors triggered by a VSI-DDoS attack lasting for only tens of millisec-
onds (e.g., the minimum measured rate-interval of the Cisco Adaptive Security
Appliance is 1 s [3], the minimum sampling interval of Snort is 1 min [9], the
sampling interval of BotSniffer’s monitor engine [16] is in seconds level). Indeed,
fine-grained monitoring could mitigate the problem, but with the cost of high
monitoring overhead and potentially high false positive alarms (falsely block
legitimate users), because web application workload is naturally bursty [21]. We
will discuss the impact of monitoring granularity in more detail in the following.
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5 Discussion of Possible Detection/Defense Mechanisms

Here, we introduce two more candidate countermeasures for VSI-DDoS attacks
and discuss their pros and cons in practice.

(1) Fine-Grained VSBs Detection. A natural way to detect a VSI-DDoS
attack is to detect the occurrence of VSBs in the target web system, and deter-
mine whether they are caused by bursts of malicious HTTP requests. However,
detecting VSBs in the target web system is challenging because they usually
occur in milliseconds level; from Sampling Theory, these VSBs would not be
reliably detectable by normal tools sampling at time intervals from 1 s (e.g.,
Snort, BotSniffer [16], sar, vmstat, top) to several minutes (e.g, CloudWatch).
To reliably detect VSBs and their correlation with a potential VSI-DDoS attack,
we need both the system and application level fine-grained monitoring (millisec-
ond level). System-level monitoring is to detect VSBs by collecting the hard-
ware resource utilization of all component servers in the target system using
fine-grained monitoring tools (e.g., collectl). Application level monitoring is to
collect the request processing logs of each component server in the system and
analyze the performance metrics such as incoming request rate, queue status, and
point-in-time response time in fine granularity. Given the collected fine-grained
monitoring data, we apply a timeline correlation analysis to link the observed
VSBs in system-level monitoring with the application level performance metrics,
as we have illustrated in Sect. 2.3 (see Fig. 2). On the other hand, with “coarse”
monitoring granularity (e.g., 1 s), these metrics only show moderate variations or
non-saturation (see Fig. 3) over time, which will likely not bring any attention to
administrators. Although the fine-grained monitoring approach is conceptually
simple, it requires sophisticated fine-grained monitoring tools. [36] shows that
VSBs can be caused by the temporary saturation of any system resource that is
in the execution path as HTTP requests flow via the system. Specifically, VSBs
caused by a VSI-DDoS attack may not necessarily be in hardware resources, but
in system soft resources (e.g., database locks, thread pool) that are out of the
scope of existing fine-grained monitoring tools (e.g. collectl). We observed this
phenomenon when we deploy Opentaps, a popular open source ERP/CRM web
application, in Amazon EC2 cloud platform. The target Opentaps web appli-
cation shows a significant long-tail latency problem under a VSI-DDoS attack
while collectl reports no saturation of any hardware resources. In addition, mon-
itoring overhead is another big concern of the fine-grained monitoring approach.
In our RUBBoS experiments, we observe that collectl incurs high overhead at
sub-second sampling intervals (about 6% CPU utilization overhead at 100 ms
interval and 12% at 20 ms).

(2) User Behavior Model Validation. Some advanced defense mechanisms
use machine-learning based techniques to learn a normal user behavior model
from web server logs. These user behavior models [32,37] are used to differen-
tiate HTTP requests sent by humans from those sent by bots. For example,
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Oikonomou and Mirkovic [32] model three aspects of human behaviors such as
inter-arrival time of consecutive requests from the same user, choice of content
to access, and ability to ignore invisible content. Such user behavior models
are indeed effective if a VSI-DDoS attacker chooses single type of requests to
attack or a set of heavy requests that have low transition probability among
them. However, the attacker can set the interval between consecutive bursts
in a VSI-DDoS attack similar to the browsing behavior of a legitimate user
(e.g., an average 7-s think time between two webpages). The attacker can also
learn a popular sequence of HTTP requests that a legitimate user will likely go
through when visiting the target website. Then the same sequence of requests
can be selected as the attack requests. Such selection strategy may not be the
most cost-efficient one since not all of the selected requests are heavy, but the
attacker can still achieve the goal by controlling more bots to launch the attack.
Defense mechanisms that adopt user behavior models certainly raise the bar of
our attacks, but they do not suffice to detect and defend such attacks.

6 Related Work

DDoS attack and defense mechanisms have been extensively investigated and
categorized in survey papers [30,38]. In this section, we review the most relevant
work in two aspects: the low-rate network-layer pulsating DDoS attacks and the
low-volume application-layer DDoS attacks [28].

Low-Rate Network-Layer Pulsating DDoS Attacks. Many attack mecha-
nisms in this category [17,22,23,25,27] have been proposed, which send bursts of
TCP packets to cause packet drops, by exploiting deficiencies in TCP retrans-
mission time-out mechanism known as Shrew attack [25], congestion control
response mechanism known as Pulsating attack [23,27], or the transients of the
system’s adaptation mechanisms known as RoQ attack [17]. These attacks share
some similar features with VSI-DDoS attacks, such as the low attacking volume
in Shrew and Pulsating attack, and the QoS degradation in RoQ attack. How-
ever, our work differs from these work in three aspects: (1) all these attacks are
network-layer attacks targeting at network links, while our attacks are at the
application-layer, exploiting the bottleneck resource (e.g., CPU, I/O) and the
complex resource dependencies (e.g., push-back wave [36]) inside the web sys-
tem; (2) these attacks usually require a fixed or crafted burst interval to synchro-
nize the Retransmission Timeout (RTO) duration, while our attacks are more
flexible in selecting burst volume, length and interval, which allows our attack
to be even stealthier; (3) our evaluation metric is based on percentile response
time, representing real user experience and provider’s service level agreements,
which has not been used previously to quantify the attack impact.

Low-Volume Application-Layer DDoS Attacks. One class of low-volume
application-layer DDoS attacks specifically related to our attacks are called flash
crowds [21], which refer to the scenario when thousands of legitimate users
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intensively browse an e-commercial website due to a hot event (e.g., Black
Friday deals). Previous detection mechanisms are mainly focusing on differentiat-
ing traffic from flash crowds created by legitimate users or application-layer DDoS
attacks [21,34,37], such as using hidden semi-Markov model [37] and session-level
misbehaviors [34] for anomaly detection. VSI-DDoS attacks can be launched with
randomized interval and learn from the user behaviors of a legitimate user, which
invalidates those user behavior model-based application layer detection mecha-
nisms.More importantly,VSI-DDoS attacks exploit very short bottlenecks (VSBs)
as the system vulnerability, VSBs can be much shorter (tens of milliseconds) than
the duration of the traditional application-layer flash crowds traffic (tens of sec-
onds or minutes). Thus, the detection mechanisms of identifying DDoS attacks
from flash crowds can be defeated by our VSI-DDoS attacks.

7 Conclusions

We presented a new type of low-volume application layer DDoS attack, VSI-
DDoS attacks, exploiting a newly discovered system vulnerability (VSBs) of
n-tier web applications. Using concrete experimental results we showed that VSI-
DDoS attacks can be specially effective and stealthy because they can cause an
intolerable long-tail latency issue of the target system while the average usage
rate of all the system resources is at a moderate level (Sect. 2.3). We developed a
VSI-DDoS attacking framework in which an attacker can systematically profile
the target web application and train key attacking parameters for an effective
VSI-DDoS attack (Sect. 3). Through a representative web application benchmark
under realistic cloud scaling settings and equipped with the most popular state-
of-the-art DDoS defense tools, we validated the negative impact and stealthiness
of VSI-DDoS attacks, and confirmed the practicality of our attacking framework
(Sect. 4). We further explored the pros and cons of two possible countermeasures
for our attacks (Sect. 5). VSI-DDoS attack, as a newfound DDoS attack, is an
important contribution to complement emerging DDoS attacks.
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