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ABSTRACT

Distributed Denial-of-Service (DDoS) attacks for web applications such as e-commerce

are increasing in size, scale, and frequency. The emerging elastic cloud computing cannot

defend against ever-evolving new types of DDoS attacks, since they exploit various newly

discovered network or system vulnerabilities even in the cloud platform, bypassing not

only the state-of-the-art defense mechanisms but also the elasticity mechanisms of cloud

computing.

In this dissertation, we focus on a new type of low-volume DDoS attack, Very Short

Intermittent DDoS Attacks, which can hurt the performance of web applications deployed

in the cloud via transiently saturating the critical bottleneck resource of the target sys-

tems by means of external attack HTTP requests outside the cloud or internal resource

contention inside the cloud. We have explored external attacks by modeling the n-tier

web applications with queuing network theory and implementing the attacking framework

based-on feedback control theory. We have explored internal attacks by investigating and

exploiting resource contention and performance interference to locate a target VM (virtual

machine) and degrade its performance.
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CHAPTER 1
INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks for web applications such as e-commerce

are increasing in size, scale and frequency [1, 2]. Akamai’s “quarterly security reports Q4

2016” [1] shows the spotlight on Thanksgiving Attacks, the week of Thanksgiving (involving

the three biggest online shopping holidays of the year: Thanksgiving, Black Friday, and

Cyber Monday) is one of the busiest times of the year for the retailers in terms of sales

and attack traffic. On the other battlefield, Berkeley’s paper “above the clouds: a Berkeley

view of cloud computing” [3] first introduced Cloud Computing in 2009, they predicted the

top one opportunity for adoption of Cloud Computing is that it can use elasticity to defend

against DDOS attacks. Until today, Cloud Computing has a rapid development and been

widely adopted. A large number of web-sites are moved onto the cloud [4, 5]. However,

DDoS attacks are still very active and even more severe, since ever-evolving new types of

DDoS attacks that exploit various newly discovered network or system vulnerabilities even

in the cloud, bypassing not only the state-of-the-art defense mechanisms [6,7] but also the

elasticity mechanisms of Cloud Computing.

Previous researches on performance bottleneck and interference in the cloud, demon-

strate the unique features of performance issues in the cloud as follows: (i) the period of

bottleneck is very short, especially within sub-second duration [8,9]; and (ii) the dependence

among various resources is very strong, even cross different virtual/physical machines [10];

and (iii) resource contention and performance interference occurs when the utilization of

shared hardware/software resources becomes high [11,12]; and (iv) the source of bottleneck

is usually dynamic and unpredictable [13]; and (v) the adverse impact of application perfor-

mance is very remarkable [14–16]. These new identified performance problems in the cloud

motivated me to study the practicality and impact of the hypothetical attacks, especially

for tail-latency sensitive use-facing Web applications, e.g., search engine, e-payment, online

gaming.
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In web applications such as e-commerce, fast response time is critical for service

providers’ business. For example, Amazon reported that an every 100ms increase in the

page load is correlated to a decrease in sales by 1% [17]; Google requires 99 percentage of

its queries to finish within 500ms [18]. In practice, the tail latency, rather than the av-

erage latency, is of particular concern for mission-critical web-facing applications [18–21].

Only requests with response time within the specified threshold have a positive impact to

service providers’ business, and the requests with long response time (beyond the thresh-

old), not only waste network and system resources, but also cause penalties (negative

impact in revenue) to the business of the service provider. In general, 99th, 98th, and 95th

percentile response time are representative metrics to measure the performance of web ap-

plications [19, 22, 23]. In this work, we also use percentile response time (tail latency) as

the evaluation metric to measure the effectiveness of the proposed attacks. The application

scenario of the proposed attacks is focusing on Web applications, because they are not only

most widely used services in the cloud, but also more sensitive on response time such as

e-commerce websites.

Traditional Denial Of service (DoS) attacks hurt the availability of the target service by

overloading its resources [6,7,24]. In the cloud environments, the attacking approaches are

much more flexible and abundant, can be categorized in two classes: external and internal

attacks [25,26]. External attacks are the most orthodox form of DoS [6,7,24]. For external

attacks, our hypothesis is that the external HTTP requests supported by the victim web-

sites deployed in the cloud can cause sudden jump of resource demand flowing into the

target system and temporally cause resource bottleneck in the weakest point of the target

system, which in turn hurt the performance of service, such as very long response time

perceived by the legitimate users. In contrast, internal attacks are new-born, which are

emerging simultaneously with Cloud Computing by virtualization technique [25, 26]. For

internal attacks, our hypothesis is that the adversarial programs in the co-located VMs [27]

(on the same host with the target VM) can cause resource contention and performance
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interference of the target VM and hurt its performance of service, the same as the severe

consequences caused by external attacks [28,29].

In this work we present a new low-volume application-layer DDoS attack called Very

Short Intermittent DDoS (VSI-DDoS) attacks. A VSI-DDoS attacker creates intermittent

performance interference bursts by carefully chosen legitimate external HTTP requests

outside the cloud or internal resource contention inside the cloud, with the purpose of

creating “Unsaturated DoS”, where the denial of service can be successful for short periods

of time (e.g., hundreds of milliseconds). VSI-DDoS attacks are not to bring down the

system as traditional flooding DDoS attacks do, but rather to degrade the quality of service

by causing frequent and sometimes intolerable delays for legitimate users (e.g., long-tail

latency), which will eventually damage the long-term business goal of the target system.

Through highlighting the practicality and impact of the proposed attacks, I hope that

this work will draw attention of cloud providers to furnish much securer infrastructure to

develop and deploy Web applications in the cloud.

1.1 Dissertation Statement and Contributions

My dissertation statement is formulated as follows: Very Short Intermittent DDoS

Attacks expose significant challenges on tail latency of Web applications deployed in the

cloud that can be effectively detected and mitigated through fine-grained time-correlation

analysis.

To support the statement, we make the following three concrete contributions:

• We describe external and internal Very Short Intermittent DDoS (VSI-DDoS) Attacks

in a stealthy manner that can broadly threaten a wide range of web applications

deployed in the cloud. As for external attacks, the attacker sends intermittent pulses

of legitimate HTTP requests to the target web system, causing frequent short-term

denial of service by transiently saturating the bottleneck resource of the system (last

within sub-second duration). As for internal attacks, we launch the internal attacks by

exploiting the co-located VMs (the target VM is in the same host) as the attacking

3



VMs to trigger resource contention of non-partitionable shared hardware resource

in the same host. This attack creates intermittent interference bursts of resource

contention in the host of the cloud, causing frequent short-term denial of service

by transiently saturating the bottleneck resource of the system. Since the average

utilization of the target system under VSI-DDoS attacks is usually in moderate level

(e.g., about 50-60%), tracing the cause of the performance problem is very difficult.

• We develop the attacking framework that is able to efficiently and adaptively launch

the proposed attacks against a target web application. We model the impact of our

attacks in n-tier systems based-on queue network models, which can effectively guide

the attacks in an even stealthy way. And then we implement the attacking framework

based-on the feedback control theory (e.g., Kalman filter) that allows our attacks to

fit the dynamics of background requests or system state by dynamically tuning the

optimal attack parameters. Through a representative web application benchmark

(RUBBoS [30]) under realistic cloud scaling settings and equipped with the most

popular state-of-the-art DDoS defense tools, we validate the practicality of the attack

framework. We find that an appropriate combination of these attack parameters not

only achieves high attacking efficiency, but also escapes the radar of the most popular

state-of-the-art DDoS defense tools, even though the web application benchmark is

deployed in the elastic public cloud platform (e.g., Amazon EC2, Microsoft Azure).

• We investigate potential practical approaches to detect or mitigate the proposed

attacks. Due to the unique feature of the proposed attacks (very short-lived and in-

termittent), we exploit fine-grained monitoring (e.g., 50ms) to correlate the measured

performance bottleneck with the potential attacking requests and detect the external

attackers. To mitigate the internal attacks, the potential approach is to record the

performance count in the host and reschedule the placement of the adversarial and

victim VMs (e.g., live migration).
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1.2 Organization of This Dissertation

We outline the remainder of this dissertation as follows. Chapter 2 describes external

Very Short Intermittent DDoS attacks from high-level point of view. Chapter 3 future goes

deep into external VSI-DDoS attacks, termed Tail attacks, modeling the attack impact

and implementing a feedback control based attack framework. Chapter 4 extends VSI-

DDoS attacks from external attacks outside the cloud to internal attacks inside the cloud.

Chapter 5 concludes this work and discuss some future work.
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CHAPTER 2
VERY SHORT INTERMITTENT DDOS ATTACKS

In this chapter 1 , we present a new class of low-volume application layer DDoS attack–

Very Short Intermittent DDoS (VSI-DDoS). Such attack sends intermittent bursts (tens

of milliseconds duration) of legitimate HTTP requests to the target website with the goal

of degrading the quality of service of the system and damaging the long-term business of

the service provider. VSI-DDoS attacks can be especially stealthy since they can signifi-

cantly impair the target system performance while the average usage rate of all the system

resources is at a moderate level, making it hard to pinpoint the root-cause of performance

degradation. We develop a framework to effectively launch VSI-DDoS attacks, which in-

cludes three phases: the profiling phase in which appropriate HTTP requests are selected

to launch the attack, the training phase in which a typical Service Level Agreement (e.g.,

95th percentile response time < 1 second) is used to train the attack parameters, and the

attacking phase in which attacking scripts are generated and deployed to distributed bots

to launch the actual attack. To evaluate such VSI-DDoS attacks, we conduct extensive ex-

periments using a representative benchmark web application under realistic cloud scaling

settings and equipped with some popular state-of-the-art IDS/IPS systems (e.g., Snort),

and find that our VSI-DDoS attacks are able to effectively cause the long-tail latency

problem of the benchmark website while escaping the radar of those DDoS defense tools.

2.1 Introduction

Distributed Denial-of-Service (DDoS) attacks for Internet services such as social net-

works and e-commerce are increasing in sophistication and scale. Kaspersky Lab’s “DDoS

Intelligence Report Q1 2017” [31] reports that the trend of DDoS attacks has been increas-

ing despite numerous DDoS defense mechanisms. One important reason of the increasing

1Parts of this chapter have been previously published as: H. Shan, Q. Wang, and Q.
Yan, “Very short intermittent ddos attacks in an unsaturated system,” in Proceedings of
the 13th International Conference on Security and Privacy in Communication Systems.
Springer, 2017, Reprinted by permission.
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popularity of DDoS attacks is due to the ever-evolving new types of DDoS attacks that

exploit various newly discovered network or system vulnerabilities, bypassing the state-of-

the-art defense mechanisms [6,7]. The damage that these DDoS attacks cause to enterprise

organizations is well-known, and includes both monetary (e.g., $40,000 per hour) and cus-

tomer trust losses [32]. Therefore, for guarding these Internet services, it is very important

to detect, prevent and mitigate various emerging DDoS attacks.

In this work, we present a new low-volume application-layer DDoS attack called Very

Short Intermittent DDoS (VSI-DDoS). A VSI-DDoS attacker sends intermittent bursts of

carefully chosen legitimate HTTP requests to the target system, with the aim of creating

“Unsaturated DoS”, where the denial of service can successfully last for short periods of

time (i.e., hundreds of milliseconds). VSI-DDoS attacks are not to bring down the system

as traditional flooding DDoS attacks do, but rather to degrade the quality of service by

causing frequent and sometimes intolerable delays for legitimate users, which will eventually

damage the long-term business goal of the target system. For example, given that modern

web applications care more about the tail latency than the average latency [19] (e.g., Google

requires 99 percentage of its web-search to finish within 0.5s [18]), a long-tail latency (e.g.,

95th percentile response time > 1s) caused by a VSI-DDoS attack can significantly affect

the target website’s business and reputation.

Compared to previous research on network-layer pulsating DDoS attacks [33–38], VSI-

DDoS is a type of low-volume application-layer DDoS attacks, with even lower level of

traceability and better stealthiness. Unlike the network-layer pulsating attacks which in-

tend to temporarily saturate the bandwidth of network links that connect to the target

system, VSI-DDoS attacks aim to create very short saturations of the bottleneck resource

(usually in CPU or disk I/O) inside the target system, which we refer to as very short bot-

tlenecks (VSBs) and typically require much less amount of attack traffic to trigger them.

Less amount of attack traffic leads to a higher level of stealthiness. In addition, we adopt

legitimate HTTP requests, which can easily penetrate the defense mechanisms adopted by
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CDNs, network routers or switches in the path to the target system, thereby reducing the

detection surface.

To effectively mount VSI-DDoS attacks, we should fully understand the triggering

conditions of VSBs inside the target system, and quantify their long-term damages on the

overall system performance. We develop a three-phase framework to tackle these challenges,

which involves profiling, training, and attacking. Specifically, in the profiling phase we

profile all the HTTP requests supported by the target website and select a set of appropriate

ones to launch the attack. We find that heavy requests (e.g., the request with long service

time consuming more bottleneck resource in the target web system) can achieve significantly

better attack efficiency than light requests; only a small burst of heavy requests are needed

to trigger VSBs of the target system, reducing the cost of an effective attack. In the training

phase we use a typical Service Level Agreement (e.g., 95th percentile response time < 1

second) for most e-commerce websites as an evaluation metric to train the key parameters

of an effective VSI-DDoS attack, including burst volume, length, and interval. We find that

an appropriate combination of these parameters not only achieves high attacking efficiency,

but also escapes the radar of the most popular state-of-the-art DDoS defense tools, which

further validates the stealthiness of the proposed attack.

In summary, the main two contributions of this work are:

• We present a novel low-volume application-layer VSI-DDoS attack that can broadly

threaten a wide range of web applications in a stealthy manner. Unlike the traditional

brute-force DoS attacks or pulsating attacks which focus on network bandwidth, VSI-

DDoS attacks target the bottleneck resource of the target web system using legitimate

HTTP requests, thereby reducing the cost of an effective attack while keeping the

attack highly stealthy.

• We develop a three-phase framework via an empirical approach that is able to ef-

ficiently launch VSI-DDoS attacks against a target web application. Through a

representative web application benchmark under realistic cloud scaling settings and

8



equipped with the most popular state-of-the-art DDoS defense tools, we validate the

practicality of our attacking framework.

Through our evaluation of VSI-DDoS attacks under realistic cloud scaling settings and

IDS/IPS systems, we confirm that the attacks not only bypass the triggering conditions of

the cloud scaling but also invalidate capacity-based threshold monitoring and detection. We

further explore two potential solutions to VSI-DDoS attacks: fine-grained VSBs detection

and user behavior model validation, and discuss their strengths and weaknesses in practice.

The rest of this chapter is organized as follows. Section 2.2 presents the origin and

motivation of VSI-DDoS attacks. Section 2.3 describes the definition of VSI-DDoS attacks.

Section 2.4 presents the design of VSI-DDoS attack framework. Section 2.5 evaluates the

effectiveness and stealthiness of our attacks. Section 2.6 discusses some countermeasures.

Section 2.7 presents the related work and Section 2.8 concludes the chapter.

2.2 Background and Motivations

2.2.1 Origin of VSI-DDoS attacks

VSI-DDoS attacks originate from the new phenomenon of very short bottlenecks (VSBs),

also called transient bottlenecks in recent performance analysis of Internet services deployed

in Cloud environments [8,9]. In these previous studies VSBs have been identified as one of

the main sources for the puzzling performance anomalies of the cloud-host web applications

even though the system is far from saturation. From time to time cloud practitioners have

reported that n-tier web applications produce very long response time (VLRT) requests

on the order of several seconds, when the system average utilization is only about 50-60%.

The VLRT requests themselves do not contain bugs, since the same requests return within

tens of milliseconds when no bottleneck exists in the target system. The reason why VSBs

can turn these normal short requests into VLRT requests is because VSBs can cause a

large number of requests to queue in the system within a very short time. Due to some

system level concurrency constrains (e.g., limited threads) of component servers, additional

requests that exceed the concurrency limit of any component server will be dropped, caus-
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ing TCP retransmissions (minimum time-out is 1 second [39]). The requests encountered

TCP retransmissions become VLRT requests perceived by the end users.

While most of previous studies focus on VSBs caused by internal system level factors

such as Java garbage collection, CPU Dynamic Voltage and Frequency Scaling (DVFS), in-

terference of collocated virtual machines, this newly identified system vulnerability (VSBs)

also motivates us to study the hypothetical VSI-DDoS attacks. Our hypothesis is that

the external burst of legitimate HTTP requests can cause erratic fluctuation of resource

consumption to be injected into the target system and cause VSBs in the weakest node

of the whole distributed system, which in turn cause queue overflow and VLRT requests

resulting from TCP retransmissions. Such VSI-DDoS attacks can potentially impose sig-

nificant threats on current cyber infrastructures while remaining stealthy under the radar

of state-of-the-art DDoS defense mechanisms and IDS/IPS systems.

2.2.2 Importance of Tail Latency

In web applications such as e-commerce, rapid responsiveness is vital for service providers’

reputation and business. For example, Google requires 99 percentage of its web-search to

finish within 0.5s [18]; Amazon reported that an every 100ms increase in the web-page

load reduces sales by 1% [17]. In practice, the tail latency, instead of the average latency,

is of special concern for mission-critical web-facing applications [18–21]. In shared infras-

tructures such as cloud environments, service level agreements (SLAs) are commonly used

for specifying desirable response times, typically within one or two seconds [19]. In this

case, only requests with response time within the specified threshold have a positive im-

pact to service providers’ business, and the requests with long response time (beyond the

threshold), not only waste network and system resources, but also cause penalties (neg-

ative impact in revenue) to the business of the service provider. In general, 99th, 98th,

and 95th percentile response time are representative metrics to measure the performance

of web applications [19,22,23]. In this chapter, we also use percentile response time as the

evaluation metric to measure the effectiveness of an adversary’s VSI-DDoS attacks.
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HTTP 
Requests

Apache Tomcat MySQL
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DDoS bot 

Farm

Figure 2.1. A 3-tier experimental sample topology. Appache as Web Server, Tomcat as
Application Server, MySQL as Database Server.

2.2.3 Measured Long-Tail Latency Caused by VSI-DDoS Attacks

Here, we show the impact of VSI-DDoS attacks through concrete benchmark results.

The benefit of benchmark experiments is to have a fully controlled system, which enables a

detailed study about how the target system behaves when it is under a VSI-DDoS attack.

The design of the VSI-DDoS attack framework and the real production setting evaluation

are in Section 2.4 and Section 2.5, respectively.

We use RUBBoS [30], a representative n-tier web application benchmark modeling the

popular news forum website such as Slashdot. In Figure 2.1, we show the basic configuration

for RUBBoS using the typical 3-tier architecture, with 1 Apache web server, 1 Tomcat

application Server, and 1 MySQL database server deployed in an academic cloud platform

(more details of experimental setup in Section 2.5.1). RUBBoS can emulate the behavior

of legitimate users to surf the website. Each user follows a Markov chain model to navigate

among different webpages, with averagely 7-second think time between receiving a web

page and submitting a new page request. On the other hand, we adopt Apache Bench

to send intermittent bursts of carefully chosen legitimate HTTP requests; each burst is

injected within a very short time window (e.g., 50ms).

The mechanism of how VSI-DDoS attacks impact the performance of the target n-tier

web system can only be seen using fine-grained monitoring. Figure 2.2 shows such an

analysis when the target 3-tier benchmark website serving 3000 legitimate users is under

11



a VSI-DDoS attack. All the metrics in the subfigures are measured at every 50ms time

window. Figure 2.2, a shows that the burst of attacking requests occurs in every 2 seconds.

Each burst contains about 250 legitimate HTTP requests supported by the benchmark

website within a 50ms time window. The bursts of attack requests cause transient CPU

saturations of MySQL in Figure 2.2, b. These transient CPU saturations create VSBs and

cause requests to queue in MySQL; MySQL local queue soon fills up (at 0.5s, 2.5s, 4.5s, and

6.5s), pushing requests to queue in upstream Tomcat and Apache in Figure 2.2, c. Once the

queued requests in the front-most Apache exceed its queue limit (180 in our configuration),

new requests from legitimate users will be dropped, leading to TCP retransmissions and

very long response time (VLRT) requests as we observed in Figure 2.2, d.

We also find that the VSBs cannot be observed by our normal system monitoring tools

(e.g., sar, vmstat, top) with the typical 1-second monitoring granularity. Figure 2.3, a

shows that the CPU utilization of each server in the system is not saturated all the time

using vmstat during the 8-second VSI-DDoS attacking period. Figure 2.3, b shows the

outgoing/incoming network traffic of Apache is at very low rate (< 10 MBps). We omit

the graphs of resource utilization of other resources (e.g., memory, disk I/O) since all

of them are far from saturation. Given such monitoring data, it is difficult for system

administrators to trace the cause of the performance problem.

To illustrate the negative impact of the VSI-DDoS attack, we compare the percentile

response time serving 3000 concurrent legitimate users by the target system under attack

and without-attack in Figure 2.4. The percentile response time of the system under attack

(the red line) uses the same dataset in Figure 2.2. This figure shows that all the requests

finish within 200ms without attack (the black line). However, in the attacking scenario,

the 95th percentile response time of the target system already exceeds 1 second, clearly

showing the long-tail latency problem caused by the VSI-DDoS attack. Such long-tail la-

tency problem is regarded as severe performance issue by most web applications, especially

modern e-commerce (e.g., Amazon), as we have introduced in Section 2.2.2.
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(d) Number of requests (from
legitimate users) with response
time > 1s during the same 8-
second time period. Such long
requests are caused by TCP re-
transmissions once the front-most
Apache drops incoming requests
(see Figure 2.2, c).

Figure 2.2. Measured performance of the benchmark application under a VSI-DDoS attack.
Bursts of attacking HTTP requests (Figure 2.2, a) trigger VSBs in the bottom-most MySQL
of the system (Figure 2.2, b), which cause requests to queue from local to the front-most
Apache (Figure 2.2, c). Queue-overflows occur in Apache, causing TCP retransmissions
and long response time requests (Figure 2.2, d).

2.3 VSI-DDoS Attack Overview

In a VSI-DDoS attack scenario the adversary is to create frequent VSBs in the target

web system by sending intermittent bursts of legitimate HTTP requests to the target

system without being detected. So the goal of VSI-DDoS attacks is not to bring the
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Figure 2.4. Percentile response time of the system serving 3000 legitimate users without
and with the attack. The 95th percentile response time under attack is > 1 second, clearly
showing the long-tail latency problem caused by the VSI-DDoS attack.

system down as traditional flooding DDoS attacks do, but rather to degrade the quality of

service by causing frequent and sometimes intolerable delays for the legitimate users, which

will eventually damage the business of the target system in the long run. Such attacks are

stealthy because the target web system is in an “unsaturated state”; the duration of each

created VSB is very short (e.g., 50ms), which can easily escape the detection of normal

monitoring tools adopting coarse granularity statistical analysis (e.g., seconds or minutes).

To effectively launch a VSI-DDoS attack, we assume that all the bots under control

are coordinated and synchronized so that requests generated by these bots can reach the
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target web application at the same time or within a very short timeframe. This assumption

is reasonable because many previous research efforts already provide solutions, using either

centralized [33,40,41] or decentralized methods [35], to coordinate bots to send synchronized

traffic and cause network congestion at a specific link. Our focus in this chapter is how

to create frequent bursts of attacking but legitimate HTTP requests that can effectively

trigger VSBs in the target system, causing long-tail latency of the target web system while

avoiding being detected. We formally propose VSI-DDoS attacks as follows (Figure 2.5):

Effect = A(V, L, I) (2.1)

where,

• Effect is the measure of attacking effectiveness; we use percentile response time as

a metric to measure the tail latency of the target web system (e.g., 95th percentile

response time > 1s). Effect is a function of V , L, I.

• V is the number (volume) of attack requests per burst. V should be large enough to

temporarily saturate the bottleneck resource in the target system and trigger VSBs.

At the same time, V should be small enough to bypass the state-of-the-art threshold-

based detection tools [6, 7].

• L is the length of each burst. The total requests per burst V will be sent out during

the period L. Thus the instant request rate to the target website during a burst

period is V/L. L should be short enough to guarantee high instant request rate to

trigger VSBs in the target system. Contrarily, too short L will cause large portion

of attack requests dropped by the target system due to instant queue overflow (too

high V/L), without causing any damage to the target system performance.

• I is the time interval between every two consecutive bursts. I infers the frequency of

bursts of HTTP requests to the target system. I should be short enough so that the
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attacker can generate bursts of HTTP request frequent enough to cause significant

performance damage on the target system. On the other hand, too short I makes the

attack similar to the traditional flooding DDoS attacks, which can be easily detected.

Figure 2.5. An illustration of a VSI-DDoS attack, which consists of burst volume V of
HTTP requests, burst length L, and burst interval I.

We note that all the three components need to be carefully coordinated and tuned in or-

der to launch an effective VSI-DDoS attack. To evaluate the effectiveness of such an attack,

we measure the tail latency of the target website. We assume that the attack achieves its

goal if the measured percentile response time under attack exceeds the predefined thresh-

old, which depends on the SLAs of the target website. Based on this evaluation criteria,

we develop an attacking framework which is able to estimate an optimal value of each

parameter using an empirical approach for an effective VSI-DDoS attack in the following

subsection.

2.4 VSI-DDoS Attack Framework

To launch effective VSI-DDoS attacks, we present an attacking framework. The pro-

posed VSI-DDoS attack framework contains three phases: profiling, training, and attacking

(Figure 2.6). The profiling phase gets attack requests by profiling the target web system.

The training phase is to determine the three parameters of a VSI-DDoS attack. The at-

tacking phase generates and deploys attacking scripts to distributed bots and launches the

actual attack.
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Figure 2.6. VSI-DDoS Attacks framework involving three phases: profiling, training, and
attacking.

2.4.1 Profiling phase

This phase selects appropriate types of HTTP requests for attacking in order to create

VSBs in the target website with the minimum cost, meaning the least number of attacking

requests for each burst. This phase includes the following three steps.

(1) Scanning the supported HTTP requests. To select appropriate HTTP requests,

one challenge is to retrieve representative HTTP requests that cover all the transaction

types supported by the target website, including both static and GET/POST dynamic

requests. Although the requests for static content of a website are easy to retrieve by

using some crawling tools (e.g., scrapy), requests for dynamic content are more difficult to

get. This is because POST requests are sent out by submitting forms (content is in the

body section of a HTTP request), not through the direct URLs. To solve this issue, we

adopt a script-based open source web browser PhantomJS to retrieve and analyze the form

tags inside the HTTP response for every HTTP request. After the attacker provides some

initial values for associated input boxes (e.g., user-name and password) inside each form,

PhantomJS can submit POST requests automatically. PhantomJS also supports cookies

which allows an attacker to conduct consecutive interactions with some websites (e.g.,

Facebook) which require user login before further website navigation. POST requests are
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important types of attack requests because they can penetrate Content Delivery Networks

(CDN) and attack the original target website. CDNs are widely used by websites nowadays

to improve the website performance by caching static content. Since POST requests are

dynamic requests which typically require to retrieve/write dynamic information from/to

the back-end database, current CDN vendors usually do not support caching responses

for POST requests [42]. Thus POST requests are natural candidates to launch effective

VSI-DDoS attacks for websites with CDN support.

(2) Identifying heavy requests using service time. Once we get enough supported

HTTP requests, the next challenge is to decide which requests consume more bottleneck

resource (e.g., Database CPU) of the target web system than the others. We term the

requests heavily consuming the bottleneck resource as heavy requests (e.g., POST requests),

meanwhile, those consuming no or little bottleneck resource as light requests (e.g., static

requests). In this case, heavy requests are natural candidates to launch a VSI-DDoS attack

because a fewer number of them are needed to trigger VSBs in the target web system than

that of light requests. A low number of attacking requests per burst also make the attack

stealthy because of the low volume of network traffic. The key question is how do we

determine which requests are heavy and which are light? We use the service time of each

type of HTTP requests as a key metric to distinguish the heavy requests from the light ones.

Service time of a HTTP request is the time serving the request by the target web system

without any queuing delay. Previous research results [9] show that the predominant part

of the service time of a request is spent on the bottleneck resource in the system. When

the target system is at low utilization (Low utilization is to rule out the queueing effect

inside the target system), service time can be estimated to be the end-to-end response

time of a request subtracting the network latency between the client and the target web

application. The end-to-end response time of a HTTP request can be easily recorded using

Apache Bench or PhantomJS. Lots of tools can be used to measure the network latency

(e.g., the ping command). We measure the service time of each type of HTTP requests
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multiple times and employ the average in order to mitigate influence of network latency

variation.

(3) Selecting candidate requests. A naive strategy to select candidate attacking requests

is always choosing the heaviest type of requests. In this case, the attacker can use the

minimum number of requests per burst to create VSBs in the target web system. However,

single type of attacking requests in a VSI-DDoS attack has the risk to be identified as

abnormal by existing DDoS defense tools using statistical analysis. For example, the defense

tool may simply aggregate all the requests sent out from the same IP and identify that

some IPs only send one type of HTTP requests, which is highly suspicious. To bypass

such statistics-based detection mechanisms [43], an attacker can select a set of top-ranked

heavy requests, which can achieve the same attacking goal with slightly increased cost.

Some more advanced defense mechanisms use machine-learning based techniques to learn

a legitimate user behavior model [44] and infer suspicions requests if the sequence or the

transition probability among them significantly deviates from the model (judging based on

pre-defined thresholds). In this case the attacker needs to select candidate requests more

carefully to make sure that the sequence of HTTP requests sent from a bot is feasible for

a legitimate user. We will discuss this in more detail in Section 2.6.

2.4.2 Training phase

This phase is to train the key parameters (V ,L, and I) of an effective VSI-DDoS attack

that meets the adversary’s goal (e.g., 95th percentile response time > 1s).

(1) Training volume. The technical objective of a VSI-DDoS attack is to create frequent

VSBs in the target web system. Thus a key challenge of VSI-DDoS attacks is to determine

whether a batch of attacking requests are able to create a VSB in the target system or not.

In most cases the attacker has no privilege to monitor the resource utilization of the target

system. Thus the attacker cannot depend on internal resource monitoring to determine the

occurrence of VSBs. However, we know that the occurrence of a VSB will create temporary

request congestion inside the target system; once the queued requests exceed any system-
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level queue capacity (e.g., thread pool size), new arriving requests will be dropped and TCP

retransmissions (minimum time-out is 1 second) will happen, leading to long response time

perceived by the end users (see Figure 2.2). In this case, long response time caused by

queue-overflow and TCP retransmissions can be treated as a signal of the occurrence of

VSBs. Given such an idea, we can gradually increase the volume of the attacking requests

per batch until the observation of requests with abnormally long response time.

The minimum volume per burst that triggers the long response time requests due to

TCP retransmissions is the lower bound Vmin for the selected attack requests. Figure 2.7

shows the process of training Vmin for an effective VSI-DDoS attack for our RUBBoS

website, which is serving 3000 legitimate users. When burst volume is only 20, the response

time perceived by all legitimate users is lower than 250ms in Figure 2.7, a. We increase

burst volume step by step (e.g., 10 or 20) until we observe the requests sent from legitimate

users experience abnormally long response time in Figure 2.7, b. The distinct two-modal

response time distribution indicates that 100 reaches the lower bound. In practice we set the

volume higher than Vmin to guarantee the successful triggering of VSBs in the target system

and achieve better attack result as shown in Figure 2.8. On the other hand, the volume

should not be too high otherwise it will trigger the alarm of defense tools (e.g., Snort [43])

deployed in the target web system. We can increase the number of bots and reduce the

number of attack requests per bot to bypass the state-of-the-art detection mechanisms.

(2) Training burst length. A good burst length L should maximize the impact of

the burst of attacking requests on the requests sent from legitimate users. We observed

that the best L should be the service time of the selected attacking requests. A HTTP

request that originates from a client arrives at the web server, which distributes it among

the application servers, which in turn ask the database to execute the query. Due to the

RPC-style synchronous communication between consecutive tiers, the processing threads

and other associate soft resources such as database connections of a component server will

be occupied until all the activities in the downstream tiers are done. In order to create the
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Figure 2.7. Training the lower bound of volume for an effective VSI-DDoS attack for our
RUBBoS benchmark application. We increase the volume of attacking requests per burst
step by step until we observe abnormally long response time of requests sent from legitimate
users (see Figure 2.7, b).
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Figure 2.8. Impact of volume V per burst. This figure shows the percentile response time of
the target system (serving 3000 legitimate clients) gets more damages as the attack volume
per burst V increases from 100 to 550 (fixing L=50ms, I=7s).

most soft resource consumption, the burst of attacking requests should arrive within the

service time of the attacking requests. In this case, all the attacking requests will stay in

the target system before any of them finishes processing and leaves the system. Once any

of soft resources in any tier of the system are exhausted, new requests from legitimate users

will be dropped, leading to long response time requests resulting from TCP retransmissions.

Figure 2.9 shows the impact of the burst length L on the tail latency of our RUBBoS

website. We choose the heavy request “ViewStory” as the attacking requests. The service
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time of such heavy request is about 50ms. Note that the biggest attacking damage appears

when L is 50ms. Too short L leads to low effectiveness for the attacking burst, since most

of the attacking requests will be dropped due to sudden queue-overflow (Short L leads to

high instant request rate V/L, OS kernel may not be able to handle packets promptly due

to high overhead of interrupt handling [38]), without causing any harm to the requests

from legitimate users. On the other hand, too long L (e.g., the L=800ms case) leads to

low instant request rate (V/L), which may not be able to create VSBs in the target system

and lead to inferior attacking results.
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Figure 2.9. Impact of the length L per burst. The biggest attacking damage (serving 3000
legitimate clients, and fixing V=200, I=7s) appears when L is 50ms; the more the burst
length deviates from 50ms, the weaker the damage caused by the VSI-DDoS attack is.

(3) Training interval between bursts. By determining V and L of each burst we can

make sure one burst is able to trigger a VSB in the target system. The final goal of a

VSI-DDoS attack is to create the long-tail latency problem of the target web system. Too

small interval between bursts makes it similar as the traditional flooding DDoS attack,

thus can be easily detected. Too large interval creates insufficient number of VSBs in the

target web system, thus unable to achieve the adversary’s goal. To select a reasonable

interval, we start from a relatively large interval and gradually reduce the interval until

the measured tail latency meets the adversary’s goal. Figure 2.10 shows such a process

of selecting a reasonable interval for our RUBBoS benchmark. To avoid an obvious burst

22



pattern of attacking requests, the interval between consecutive bursts is not necessarily

assigned with a fixed value. A VSI-DDoS attacker can design the interval with a random

variable following certain statistical distributions, with the mean to be similar to a normal

user’s think time between consecutive requests. Figure 2.2 in Section 2.2.3 is such an

example. The interval between attack bursts follows a normal distribution with the mean

of 2 seconds.
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Figure 2.10. Impact of the interval I between bursts. This figure shows the percentile
response time of the system (serving 3000 legitimate clients) gets more damages as we
decreases I from 30s to 5s (fixing V=200, L=50ms).

2.4.3 Attacking Phase

This phase is to launch the real VSI-DDoS attack based on the previous profiling and

training results of V , L, I for request bursts. Attackers launch the attack by leveraging

the resources of multiple hosts, especially Botnet. We note that an attacker should use a

probe to continuously monitor the performance of the target website, for example, send a

sequence of very light HTTP requests (e.g., html) at regular intervals and check the response

time distribution. The profiling and training phase need to redo once the attacking results

cannot meet the adversary’s goal due to the change of baseline workload or system state

(e.g., dataset size change).
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2.5 Evaluation

2.5.1 VSI-DDoS Attacks under Cloud Scaling

To evaluate the effectiveness of our VSI-DDoS attacks in the real production settings,

we deploy RUBBoS in a popular NSF sponsored cloud platform-Cloudlab [45].

In the real production environment, once administrators pinpoint the performance

bottleneck of an n-tier system, they can solve the issue by scaling the bottleneck tier. One

policy is scaling up (updating the hardware of the bottleneck tier), and the other is scaling

out (adding more machines/virtual machines to the bottleneck tier). For example, Amazon

Auto Scaling [46] can scale out EC2 instances as the demand of an application increases.

We evaluate our attack under both scaling settings. In our experiments, we assume that

the bottleneck is MySQL since the bottleneck typically takes place in the database due

to the high resource consumption of database operations. To evaluate our attack under

the cloud scaling settings, we keep all the software configuration (e.g., queue size, DB

connection pool size) the same to rule out their impacts to our evaluation. In the scaling

up case, we update the hardware unit (1 CPU core and 1GB Memory) of MySQL from

1 to 4 Units. In the scaling out case, we increase the number of MySQL VMs from 1 to

4. All the VMs (Xen-based Emulab virtual nodes) are running CentOS 6.5 on 2.10GHz

Intel Xeon E5-2450 processors. To maximize the impact of our attack, we set the burst

length as the service time of attack requests (e.g., 50ms.), and set the burst interval as

2s. We conduct the attack experiments for 10 minutes in each scenario since half of the

DDoS attacks last longer than 10 minutes [47]. Our DDoS bot farm in Figure 2.1 consists

of 8 machines, one serves as a centralized controller that coordinates and synchronizes the

other nodes to launch the attacks.

Figure 2.11 depicts the required burst volume and the relevant usage of the bottleneck

resource at scaling up/out scenarios to achieve our attacking goal. We can see the average

CPU utilization of MySQL reduces from high load (> 80%) to moderate level (< 50%) after

the bottleneck tier is scaled, indicating the scaling policies are effective since more CPU
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cores or VMs can mitigate the impact of the bottleneck resource to the system performance.

However, we can still reach our attacking goal by increasing attacking volume per burst

even in a large scale scenario, since it requires higher burst volume to trigger VSBs in the

system after the capacity of the bottleneck tier increases. On the other hand, increasing the

attack requests by each bot obviously increases the risk of detection by the target system,

but we can coordinate more synchronized bots to send higher volume per burst to achieve

our attacking goal using decentralized synchronization mechanism [35]. As such, we can

still keep our attacks under the radar of the state-of-the-art detection mechanism.
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(a) Scaling CPU cores of MySQL.
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Figure 2.11. The required burst volume and the CPU utilization of MySQL in scaling
up/out scenarios while achieving our victim goal. Average CPU Usage decreases after
scaled, indicating the scaling mitigates the bottleneck. However, we can still get the at-
tacking goal by increasing burst volume.

In real production clouds (e.g., Amazon AWS), the users can customize some trigger-

ing conditions to instruct Amazon Auto Scaling [46] to scale out/in instances in response

to metrics (such as bandwidth usage or CPU utilization) monitored by Amazon Cloud-

Watch [48]. The monitoring granularity of Amazon CloudWatch for premium users is 1

minute [48]. For example, the target system can add more VMs once the average CPU

utilization of all the instances exceeds 85% during a 1-minute statistical period. From Sam-

pling Theory, our attack is hard to trigger the scaling plans sampling in minutes level, since

the VSBs usually occur in milliseconds level (more details about monitoring granularity

in Section 2.6). Large-scale web applications typically adopt dynamic scaling strategy for
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better resource efficiency and load balancing, VSI-DDoS attacks can avoid the triggering

conditions of the cloud scaling, thus we expect that the current cloud scaling techniques

do not help resolving our attacks.

2.5.2 VSI-DDoS Attacks under Defense Tools

To validate the stealthiness of our attacks under the state-of-the-art defense mecha-

nisms, we deploy some popular defense tools before the web tier (the role like a firewall) in

our RUBBoS environments.

Snort is the most widely deployed network anomaly detection system in the world that

is acquired by Cisco Systems on October 7, 2013, and widely used in practice for DDoS

defense [43,49]. Snort.AD [50], extended based on Snort, is a threshold and statistics-based

network anomaly detection tool, which can analyze the network traffic based on different

protocols (UDP, TCP, HTTP, etc.) within a certain period. Here, we take HTTP traffic

as a representative metric in Snort.AD to evaluate whether our attacks break through

the cordon, since our attacking requests only involve the HTTP packets. In the following

experiments, we configure 2000 and 4000 concurrent legitimate users as the baseline for low

and high background workload scenarios. We set 95th, 98th and 99th percentile response

time (>1s) as the candidate attacking goals, and call them 95th, 98th, and 99th case

hereinafter. To achieve these different attacking goals, we fix the burst length as the

service time of the attacking requests and the burst interval as 2s, and only tune the

burst volume ((250, 150, 100) and (150, 100, 50) for the 95th, 98th and 99th case of

2000 and 4000 baseline, respectively). We conduct the experiments in a 10-minute period

for each scenario. We modify the code of Snort.AD to trace the number of the HTTP

incoming/outgoing packets in a minute interval and the HTTP incoming/outgoing speed

in terms of Mega Bytes per second, to evaluate whether they exceed the threshold for these

cases with different attacking goals and background workload.

How to set the alert threshold is a well-known challenge for administrators [51, 52]:

a high threshold may not be able to detect anomalies; a low threshold may incur a high
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number of false positive alarms which an administer tries to avoid in practice. Typically,

a widely-adopted setting strategy [51,52] is to set the threshold of each monitoring metric

based on the capacity of the target system. Network security company [51] recommends

that the company‘s IT team should conduct the necessary performance tests to determine

the capacity, and set the threshold lower than the capacity to prevent resource exhaustion

(e.g., define the threshold when reaching 85% bottleneck resource utilization of the web

system). We also profile the capacity of the target system in our experimental environment

under a worst-case scenario (when serving 6000 concurrent users, the bottleneck resource,

MySQL CPU utilization, reaches 85%). In our experiments, we take this widely-adopted

strategy to define the alert threshold listed in Column 2 of Table 2.1 to capture our attacks.

Table 2.1 lists the maximal HTTP incoming/outgoing packets and speed under our

attacks for the cases with different attacking goals and background workload. All of the

measured traffic metrics are in the moderate level and far from the predefined threshold

(based on system capacity) when the corresponding attacking goal is achieved, indicating

that our attacks create an “Unsaturated illusion” for Snort. As a result, Snort reports no

alert. More importantly, the increased traffic due to our attacks is small compared to the

baseline case, especially when the attacking goal is less aggressive (e.g., 99th percentile

response time > 1s). For example, an effective VSI-DDoS attack in the 99th case only

incurs 10% more traffic when the baseline workload is 2000, and 4% more traffic when the

baseline is 4000. This result also suggests that an effective VSI-DDoS attack is easier to

achieve as the background traffic increases.

The fundamental reason that our attack (in milliseconds level) can invalidate the tra-

ditional threshold-based detection tools (in seconds or minutes level) is their coarse moni-

toring granularity. The coarse monitoring granularity is effective for identifying brute-force

DDoS attacks and flash crowds lasting for tens of seconds or minutes [53] (detailed expla-

nation in Section 2.7), but obviously too long to observe any abnormal behaviors triggered

by a VSI-DDoS attack lasting for only tens of milliseconds (e.g., the minimum measured
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Table 2.1. Measured HTTP traffic in the cases of 95th, 98th and 99th percentile response
time (>1s) as candidate attacking goals. All of measured metrics are less than the pre-
defined thresholds set based on system capacity when the corresponding attacking goal is
achieved. In.: HTTP Incoming, Out.: HTTP Outgoing, B/L: Baseline, Unit of packets:
#/min, Unit of speed: MB/sec.

2000 low load 4000 high load
Metrics Threshold 95th 98th 99th B/L 95th 98th 99th B/L

In. packets 299K 158K 119K 111K 99K 224K 214K 208K 201K
Out. packets 349K 171K 134K 127K 116K 259K 249K 241K 233K

In. speed 9.32 4.68 3.96 3.62 3.11 7.08 6.76 6.45 6.23
Out. speed 17.83 7.62 6.83 6.48 5.94 12.78 12.46 12.12 11.89

rate-interval of the Cisco Adaptive Security Appliance is 1 second [54], the minimum sam-

pling interval of Snort.AD is 1 minute [50], the sampling interval of BotSniffer’s monitor

engine [55] is in seconds level). Indeed, fine-grained monitoring could mitigate the problem,

but with the cost of high monitoring overhead and potentially high false positive alarms

(falsely block legitimate users), because web application workload is naturally bursty [53].

We will discuss the impact of monitoring granularity in more detail in the following.

2.6 Discussion of Possible Countermeasures

Here, we introduce two more candidate countermeasures for VSI-DDoS attacks and

discuss their pros and cons in practice.

2.6.1 Fine-Grained VSBs Detection

A natural way to detect a VSI-DDoS attack is to detect the occurrence of VSBs in the

target web system, and determine whether they are caused by bursts of malicious HTTP

requests. However, detecting VSBs in the target web system is challenging because they

usually occur in milliseconds level; from Sampling Theory, these VSBs would not be re-

liably detectable by normal tools sampling at time intervals from 1 second (e.g., Snort,

BotSniffer [55], sar, vmstat, top) to several minutes (e.g, CloudWatch). To reliably detect

VSBs and their correlation with a potential VSI-DDoS attack, we need both the system

and application level fine-grained monitoring (millisecond level). System-level monitoring

is to detect VSBs by collecting the hardware resource utilization of all component servers
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in the target system using fine-grained monitoring tools (e.g., collectl). Application level

monitoring is to collect the request processing logs of each component server in the sys-

tem and analyze the performance metrics such as incoming request rate, queue status, and

point-in-time response time in fine granularity. Given the collected fine-grained monitoring

data, we apply a timeline correlation analysis to link the observed VSBs in system-level

monitoring with the application level performance metrics, as we have illustrated in Sec-

tion 2.2.3 (see Figure 2.2). On the other hand, with “coarse” monitoring granularity (e.g.,

1s), these metrics only show moderate variations or non-saturation (see Figure 2.3) over

time, which will likely not bring any attention to administrators.

Although the fine-grained monitoring approach is conceptually simple, it requires so-

phisticated fine-grained monitoring tools. [8] shows that VSBs can be caused by the tem-

porary saturation of any system resource that is in the execution path as HTTP requests

flow via the system. Specifically, VSBs caused by a VSI-DDoS attack may not necessarily

be in hardware resources, but in system soft resources (e.g., database locks, thread pool)

that are out of the scope of existing fine-grained monitoring tools (e.g. collectl). We ob-

served this phenomenon when we deploy Opentaps, a popular open source ERP/CRM web

application, in Amazon EC2 cloud platform. The target Opentaps web application shows

a significant long-tail latency problem under a VSI-DDoS attack while collectl reports no

saturation of any hardware resources. In addition, monitoring overhead is another big con-

cern of the fine-grained monitoring approach. In our RUBBoS experiments, we observe that

collectl incurs high overhead at sub-second sampling intervals (about 6% CPU utilization

overhead at 100ms interval and 12% at 20ms). How to balance the monitoring overhead

and detection accuracy of a VSI-DDoS attack remains a significant challenge and future

work.

2.6.2 User Behavior Model Validation

Some advanced defense mechanisms use machine-learning based techniques to learn a

normal user behavior model from web server logs. These user behavior models [44, 56] are
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used to differentiate HTTP requests sent by humans from those sent by bots. For example,

Oikonomou et al. [44] model three aspects of human behaviors such as inter-arrival time of

consecutive requests from the same user, choice of content to access, and ability to ignore

invisible content. Such user behavior models are indeed effective if a VSI-DDoS attacker

chooses single type of requests to attack or a set of heavy requests that have low transition

probability among them. However, the attacker can set the interval between consecutive

bursts in a VSI-DDoS attack similar to the browsing behavior of a legitimate user (e.g.,

an average 7-second think time between two webpages). The attacker can also learn a

popular sequence of HTTP requests that a legitimate user will likely go through when

visiting the target website. Then the same sequence of requests can be selected as the

attack requests. Such selection strategy may not be the most cost-efficient one since not all

of the selected requests are heavy, but the attacker can still achieve the goal by controlling

more bots to launch the attack. Defense mechanisms that adopt user behavior models

certainly raise the bar of our attacks, but they do not suffice to detect and defend such

attacks. Future work can evaluate our attacks under more complicated machine-learning

based mechanisms [44,56].

2.7 Related Work

DDoS attack and defense mechanisms have been extensively investigated and catego-

rized in survey papers [6, 7]. In this section, we review the most relevant work in two as-

pects: the low-rate network-layer pulsating DDoS attacks and the low-volume application-

layer DDoS attacks [24].

Many attack mechanisms in this category [33–38] have been proposed, which send

bursts of TCP packets to cause packet drops, by exploiting deficiencies in TCP retransmis-

sion time-out mechanism known as Shrew attack [37], congestion control response mech-

anism known as Pulsating attack [35, 36, 38], or the transients of the system’s adaptation

mechanisms known as RoQ attack [33]. These attacks share some similar features with

our VSI-DDoS attacks, such as the low attacking volume in Shrew and Pulsating attack,
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and the QoS degradation in RoQ attack. However, our work differs from these work in

three aspects: (1) all these attacks are network-layer attacks targeting at network links,

while our attacks are at the application-layer, exploiting the bottleneck resource (e.g., CPU,

I/O) and the complex resource dependencies (e.g., push-back wave [8]) inside the web sys-

tem; (2) these attacks usually require a fixed or crafted burst interval to synchronize the

Retransmission Timeout (RTO) duration, while our attacks are more flexible in selecting

burst volume, length and interval, which allows our attack to be even stealthier; (3) our

evaluation metric is based on percentile response time, representing real user experience

and provider’s service level agreements, which has not been used previously to quantify the

attack impact.

One class of low-volume application-layer DDoS attacks specifically related to our at-

tacks are called flash crowds [53], which refer to the scenario when thousands of legitimate

users intensively browse an e-commercial website due to a hot event (e.g., Black Friday

deals). Previous detection mechanisms are mainly focusing on differentiating traffic from

flash crowds created by legitimate users or application-layer DDoS attacks [53,56,57], such

as using hidden semi-Markov model [56] and session-level misbehaviors [57] for anomaly

detection. VSI-DDoS attacks can be launched with randomized interval and learn from

the user behaviors of a legitimate user, which invalidates those user behavior model-based

application layer detection mechanisms. More importantly, VSI-DDoS attacks exploit very

short bottlenecks (VSBs) as the system vulnerability, VSBs can be much shorter (tens of

milliseconds) than the duration of the traditional application-layer flash crowds traffic (tens

of seconds or minutes). Thus, the detection mechanisms of identifying DDoS attacks from

flash crowds can be defeated by our VSI-DDoS attacks.

2.8 Conclusion

We presented a new type of low-volume application layer DDoS attack, VSI-DDoS at-

tacks, exploiting a newly discovered system vulnerability (VSBs) of n-tier web applications.

Using concrete experimental results we showed that VSI-DDoS attacks can be specially ef-
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fective and stealthy because they can cause an intolerable long-tail latency issue of the

target system while the average usage rate of all the system resources is at a moderate

level (Section 2.2.3). We developed a VSI-DDoS attacking framework in which an attacker

can systematically profile the target web application and train key attacking parameters

for an effective VSI-DDoS attack (Section 2.4). Through a representative web applica-

tion benchmark under realistic cloud scaling settings and equipped with the most popular

state-of-the-art DDoS defense tools, we validated the negative impact and stealthiness of

VSI-DDoS attacks, and confirmed the practicality of our attacking framework (Section 2.5).

We further explored the pros and cons of two possible countermeasures for our attacks (Sec-

tion 2.6). VSI-DDoS attack, as a newfound DDoS attack, is an important contribution to

complement emerging DDoS attacks.
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CHAPTER 3
TAIL ATTACKS ON WEB APPLICATIONS

In this chapter 1, we describe a new type of low-volume application layer DDoS attack–

Tail Attacks on Web Applications. Such attack exploits a newly identified system vulner-

ability of n-tier web applications (millibottlenecks with sub-second duration and resource

contention with strong dependencies among distributed nodes) with the goal of causing the

long-tail latency problem of the target web application (e.g., 95th percentile response time

> 1 second) and damaging the long-term business of the service provider, while all the sys-

tem resources are far from saturation, making it difficult to trace the cause of performance

degradation.

We present a modified queue network model to analyze the impact of our attacks in n-

tier architecture systems, and numerically solve the optimal attack parameters. We adopt

a feed-back control-theoretic (e.g., Kalman filter) framework that allows attackers to fit the

dynamics of background requests or system state by dynamically adjusting attack parame-

ters. To evaluate the practicality of such attacks, we conduct extensive validation through

not only analytical, numerical, and simulation results but also real cloud production setting

experiments via benchmark web application equipped with state-of-the-art DDoS defense

tools. We further proposed a solution to detect and defense the proposed attacks, involving

three stages: fine-grained monitoring, identifying bursts, and blocking bots.

3.1 Introduction

Distributed Denial-of-Service (DDoS) attacks for web applications such as e-commerce

are increasing in size, scale and frequency [1, 2]. Akamai’s “quarterly security reports Q4

2016” [1] shows the spotlight on Thanksgiving Attacks, the week of Thanksgiving (involv-

ing the three biggest online shopping holidays of the year: Thanksgiving, Black Friday,

and Cyber Monday) is one of the busiest times of the year for the retailers in terms of

1Parts of this chapter have been previously published as: H. Shan, Q. Wang, and C. Pu,
“Tail attacks on web applications,” in Proceedings of the 24nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, Reprinted by permission.
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sales and attack traffic. Web applications remain the most vulnerable entrance for any

enterprise and organization, so the attackers can exploit them to launch both low-volume

and stealthy application-layer DDoS attacks. On the other hand, in web applications es-

pecially e-commerce websites, fast response time is critical for service providers’ business.

For example, Amazon reported that an every 100ms increase in the page load is correlated

to a decrease in sales by 1% [58]; Google requires 99 percentage of its queries to finish

within 500ms [18]. Emerging augmented-reality devices (e.g., Google Glass) need the as-

sociated web applications with even greater responsiveness (e.g., within 100 milliseconds)

in order to guarantee smooth and natural interactivity. In practice, the tail latency, rather

than the average latency, is of particular concern for response-time sensitive web-facing

applications [18–21,59].

In this chapter we present a new low-volume application-layer DDoS attack–Tail At-

tacks, significantly worsening the tail latency on web applications. Web applications typi-

cally adopt n-tier architecture in which presentation (e.g., Apache), application processing

(e.g., Tomcat), and data management (e.g., MySQL) are physically separated among dis-

tributed nodes. Previous research on performance bottlenecks in n-tier systems [8–10]

shows that very short bottlenecks (VSBs) or millibottlenecks (with sub-second duration)

with dependencies among distributed nodes not only cause queuing delay in local tier, but

also cause significant queuing delay in upstream tiers in the invocation chain, which will

eventually cause the long-tail latency problem of the target system (e.g., 95th percentile

response time longer than 1 second). More importantly, this phenomenon usually starts to

appear under moderate average resource utilization (e.g., 50% or 60%) of all participating

nodes, making it difficult to trace the cause of performance degradation. In the scenario

of Tail Attacks, an attacker sends intermittent bursts of legitimate HTTP requests to the

target web system, with the purpose of triggering millibottlenecks and cross-tier queue

overflow, creating “Unsaturated DoS” and the long-tail latency problem, where denial of

service can be successful for short periods of time (usually tens or hundreds of millisec-
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onds), which will eventually damage the target website’s reputation and business in the

long term.

The study of Tail Attacks complements previous research on low-rate network-layer

DDoS attacks [33–38, 60], low-volume application-layer DoS Attacks [61, 62], and flash

crowds (usually tens of seconds or minutes) [53, 56, 57] which refer to the situation when

thousands of legitimate users suddenly start to visit a website during tens of seconds or

minutes due to a flash event (e.g., during the week of Thanksgiving). The uniqueness of

Tail Attacks from previous research is that Tail Attacks aim to create very short (hundreds

of milliseconds) resource contention (e.g., CPU or disk I/O) with dependencies among

distributed nodes, while giving an “Unsaturated illusion” for the state-of-the-art IDS/IPS

tools leading to a higher level of stealthiness.

The most challenging task for launching an effective Tail Attack is to understand the

triggering conditions of millibottlenecks inside the target web system, and quantify their

long-term damages on the overall system performance. To thoroughly comprehend the

attack scenario, we exploit the traditional queueing network theory to model the n-tier

system, and analyze the impact of our attacks to the end-users and the systems through

two new proposed metrics: damage length during which the new coming requests can be

dropped with highly probability, and millibottleneck length during which the bottleneck

resources sustain saturation. To fit the dynamics of background requests and system state,

we develop a feedback control framework. Given the implementation based on the feedback

control algorithm, we can effectively control the attacks, and find that our attacks can not

only achieve high attack efficiency, but also escape the detection mechanisms based on

human-behavior models, which further increases the stealthiness of the attack.

In brief, this work makes the following contributions:

• Proposing Tail Attacks by exploiting resource contention with dependencies among

distributed nodes, that can significantly cause the long-tail latency problem in web

applications while the servers are far from saturation.
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• Modeling the impact of our attacks on n-tier systems based-on queueing network

theory, which can effectively guide our attacks in an even stealthy way.

• Adopting a feedback control-theoretic (e.g., Kalman filter) framework that allows our

attacks to fit the dynamics of background requests and system state by dynamically

tuning the optimal attack parameters.

• Validating the practicality of our attacks through not only analytical, numerical, and

simulation results but also experimental results of a representative benchmark website

equipped with state-of-the-art DDoS defense tools in real cloud production settings.

• Presenting a conceptual solution to detect and defense the proposed attacks, involving

three stages: fine-grained monitoring, identifying bursts, and blocking bots.

We outline the rest of this chapter as follows. Section 3.2 describes an attack scenario

and the practical impact of Tail Attacks in real cloud production settings. Section 3.3 mod-

els our attack scenarios in an n-tier system using queueing network theory, and provides an

effective approach to solve the potential optimal attack parameters numerically. Further,

we evaluate the attack analytical model in JMT [63] simulator environment and suggest

several guidelines to choose the optimal attack parameters in more complex cases (e.g., the

competition for free slots of a queue between attack requests and normal requests, over-

loaded attack requests can be also dropped by the front-tier server). Section 3.4 describes

our concrete implementation to launch Tail Attacks in real web applications. We adopt

Kalman filter, a feedback control-theoretic tool, to automatically adjust the optimal attack

parameters fitting the dynamics of target system state(e.g., dataset size change) and back-

ground workload. Section 3.5 shows our attack results of RUBBoS [30] benchmark website

we have conducted in real cloud production settings, which further confirm the effectiveness

and stealthiness of the proposed attacks, and the practicality of the control framework in

more practical Web environments. Section 3.6 provides a “tit-for-tat” strategy to detect

and defend our attacks targeting the unique scenario and feature of the proposed attack.
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Section 3.7 discusses some additional factors that may impact the effectiveness of Tail

attacks. Section 3.8 presents the related work and Section 3.9 concludes the chapter.

3.2 Scenario and Motivations

Consider a scenario of a Tail attack in an n-tier system in Figure 3.1. By alternating

short “ON” and long “OFF” attack burst, an attacker guarantees the attack both harm-

ful and stealthy. Short “ON” attack burst is typically on the order of milliseconds. The

following sequence of causal events will lead to the long-tail problem at moderate average

utilization levels during the course of Tail Attacks. (Event1) The attackers send intermit-

tent bursts of attack but legitimate HTTP requests to the target system during the “ON”

burst period; each burst of attack requests are sent out within a very short time period

(e.g., 50ms). (Event2) Resource millibottlenecks occur in some node, for example, CPU or

I/O saturates for a fraction of a second due to the burst of attack requests. (Event3) A

millibottleneck stops the saturated tier processing for a short time (order of milliseconds),

leading to fill up the message queues and thread pools of the bottleneck tier, and quickly

propagating the queue overflow to all the upstream tiers of the n-tier system as shown

in Figure 3.1,b. (Event4) The further incoming packets of new requests are dropped by

the front tier server once all the threads are busy and TCP buffer overflows in the front

tier. (Event5) On the end-user side, the dropped packets are retransmitted several sec-

onds later due to TCP congestion control (minimum TCP retransmission time-out is 1

second [39]), the end users with the requests encountering TCP retransmissions perceive

very long response time (order of seconds). Long “OFF” attack burst is typically on the

order of seconds, in which the target system can cool down, clearing up the queued requests

and returning back to a low occupied state shown in Figure 3.1,a. Unlike the traditional

flooding DDoS attacks which aim to bring down the system, our attack aims to degrade the

quality of service by causing the long-tail latency problem for some legitimate users while

keeping the attack highly stealthy. The alternating short “ON” and long “OFF” attack

burst can effectively balance the trade-off between attack damage and elusiveness.
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Figure 3.1. Attack scenario and system model of Tail attacks alternating short “ON” and
long “OFF” attack burst.

Table 3.1 shows the impact of Tail Attacks through concrete benchmark web appli-

cation with real production settings deployed in the most popular two commercial cloud

platforms (Amazon EC2 [64], Microsoft Azure [65]) and one academic cloud platform (NSF

Cloudlab [45]). We use a notation CloudPlatform-ServerTiers-BaselineWorkload to denote

the cloud platform, the configuration of the n-tier system, and the background workload.

For Server Tiers, We use a four-digit (or three-digit) notation #W#A#L#D to denote the

number of web servers, application servers, load-balance servers (may not be configured),

and database servers. More experimental details are available in Section 3.5.1. Table 3.1

compares the tail latency of the target system under attack and without attack, indicating

the significant long tail latency problem under attack. Such long tail latency problem (e.g.,

95th percentile response time > 1 second) is considered as severe performance degradation

by most modern e-commerce web applications (e.g., Amazon) [18–21,58]. At the same time,

the average response time is still in acceptable range under attack, making the illusion of

“business as usual” for system administrators.

3.3 Tail Attacks Modeling

In this section, we provide a simple model to analyze the impact of our attacks to

the end-users and the victim n-tier system. Based-on the simplified model we introduce

an effective approach of getting the potential optimized attack parameters to achieve our
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Table 3.1. The measured long-tail latency under Tail Attacks in real cloud production
setting. W/o att.: Without attacks, Att.: under Tail Attacks, RT: response time(ms).

95ile RT 98ile RT 99ile RT Average RT

Setting
W/o
att.

Att.
W/o
att.

Att.
W/o
att.

Att.
W/o
att.

Att.

EC2-111-2K 255 1347 267 1538 308 1732 192 273

EC2-1212-4K 247 1139 282 1341 328 1683 170 218

EC2-1414-6K 263 1085 270 1285 312 1628 160 206

Azure-111-1K 251 1153 274 1295 295 1821 176 290

Azure-1212-2K 254 1090 278 1284 295 1507 177 221

Azure-1414-3K 264 1090 297 1314 325 1510 181 242

NSF-111-1K 141 1217 151 2262 159 7473 90 327

NSF-1212-2K 128 1101 143 1502 167 7016 88 309

NSF-1414-3K 118 1014 122 1413 127 3152 71 268

attack goal. Finally, we evaluate the model via simulation experiments and suggest several

approaches to tune the attack parameters.

3.3.1 Model

Queueing network models are commonly used to analyze the performance problems in

complex computer systems [66], especially for performance sizing and capacity provision.

Here, we use a well-tuned queuing network to model n-tier systems, and analyze the se-

quence of causal events and the impact in the context of Tail Attacks shown in Figure 3.1.

Table 3.2 summarizes the notation and description of the parameters used in our model.

The basic attack pattern (see Event1 in Section 3.2) shown in Figure 3.1 is that during

the “ON” burst period (L) the attackers send a burst of attack requests with the rate (B),

after the “OFF” burst period (T-L) they send another burst again, and repeat this process

during the course of a Tail attack. If all the attack requests will not be dropped by the

target system (more complex case will be discussed in Section 3.3.3), we can calculate the

attack volume during a burst by:

V = B ∗ L (3.1)

We assume that the external burst of legitimate HTTP requests (Event1 in Section 3.2)

can cause sudden jump of resource demand flowing into the target system and cause milli-
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Table 3.2. Notation and description of the parameters used for modeling and analyzing
Tail Attacks.

Parameter Description
Q i the queue size for the ith tier

C i,A the capacity serving attack requests for the ith tier
C i,L the capacity serving legitimate requests for the ith tier
λi the legitimate request rate terminating in the ith tier
B the attack request rate during a burst
L the burst length during a burst
V the burst volume during a burst
T the interval between every two consecutive bursts
l i the time to fill up the queue of the ith tier

PD the period of the requests dropped during a burst
PMB the period of a millibottleneck during a burst
ρ(L) the average drop ratio during a burst
ρ(T) the drop ratio during the course of an attack

bottlenecks (Event2 in Section 3.2) in the weakest point of the system [33]. In our model

analysis, we assume that the n-th tier is the bottleneck tier. For example, the bottleneck

typically occurs in the database tier (the n-th tier) in web applications due to the high

resource consumption of database operations.

Due to the inter-tier dependency (call/response RPC style communication) in the n-

tier system, one queued request in a downstream server holds a thread in every upstream

server. Thus, the system administrator typically configures the queue size of upstream tiers

bigger than the queue size of downstream tiers. In this case, millibottlenecks (Event2 in

Section 3.2) caused by overloaded attack bursts can lead to cross tier queue overflow from

downstream tiers to upstream tiers (Event3 in Section 3.2) due to the strong dependency

among n-tier nodes. If the queue size satisfies

(C1) Q1 > Q2 > ... > Qn−1 > Qn

and the burst rate satisfies

(C2) λn + B > C n
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for all i=1,...,n, then the time needed to fill up the queue for the n-th server is approximately

ln =
Qn

(λn +B − Cn,A)
(3.2)

ln−1 =
(Qn−1 −Qn)

(λn−1 + λn +B − Cn,A)
(3.3)

...

l1 =
(Q1 −Q2)

(
∑n

i=1 λ i +B − Cn,A)
(3.4)

When millibottlenecks occur in the n-th server, firstly the queue in the n-th tier is overflown

during ln, which equals the available queue size of the n-th tier divided by the newly-

occupied rate for the queue of the n-th tier in Equation 3.2. The available queue size

equals the queue size of each tier subtracting the queue size of its directly downstream tier.

The newly-occupied rate equals the incoming rate of each tier subtracting the outgoing

rate of the total system (Cn,A), the incoming rate of the n-th tier includes the requests

going through the n-th tier and terminating in the n-th tier (B for the attack requests and

λn for the normal requests). We carefully choose the attack requests [59] guaranteeing the

attack requests go through every tier and terminate in the last bottleneck tier (detailed

implementation in Section 3.4.2). Equation 3.3 represents the time to fill up the queue

in the n-1 -th tier. Because one queued request in a downstream server holds a position in

the queue of every upstream server, after the n-th tier is full, the available queue size of

the n-1 -th tier should be (Qn−1 - Qn). All the requests arriving to a downstream tier need

to go through every upstream tier, thus the incoming rate of the n-1 -th tier includes the

request rate of terminating in the n-1 -th tier (λn−1) and the request rate of going through

the n-1 -th tier (λn + B). Similarly, we can calculate the time to fill up every queue in the

n-tier system during the process of propagating the queue overflown. Finally, the required

time to overflow all the queues in the n-tier system is the sum of l i.
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Once all the queues are overflown (Event3 in Section 3.2) in the n-tier system, the new

incoming requests may be dropped by the front tier (Event4 in Section 3.2). We term the

period of the requests dropped during a burst as damage length. If the attackers continue

to send attack requests to the system with overflown queues, and we assume that attack

requests can always occupy the free position of the queue in the system (more complicated

case will be discussed in Section 3.3.3), then we can approximately infer damage length by:

PD = L−
n∑

i=1

li (3.5)

Further, the end-users with the dropped requests perceive very long response time (Event5

in Section 3.2), leading to the long-tail latency problem caused by our attacks (Event1 in

Section 3.2). Because long response time resquests occur during damage length, percentile

response time can be approximately estimated as follows,

ρ(T) =
PD

T
(3.6)

During a burst, the servers need to provide all the required computing resources (in-

cluding bottleneck resources) to serve both attack requests and normal requests. We term

the period of a millibottleneck during a burst as millibottleneck length, during which bot-

tleneck resources sustain saturation (e.g., transient CPU satuation). Thus, millibottleneck

length should involve the resource consumption to serve both attack and normal requests

during a burst.

During millibottleneck length, the bottleneck resources sustain saturation. Millibottle-

neck length should involve the serving time for both attack and normal requests during a

burst. The attackers only send requests within the short “ON” period, thus the amount of

attack requests is the burst volume V. Meanwhile, the legitimate users always send requests

during millibottleneck length, thus the saturation length is an infinite recursive process until

it converges to zero exponentially. Equation (3.7) represents millibottleneck length derived
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through the geometric progression in mathematics, here, m limits to infinity, PMB is a

function of V.

PMB = V ∗ 1

C n,A

+ V ∗ 1

C n,A

∗ λn ∗
1

C n,L

+V ∗ 1

C n,A

∗ λn ∗
1

C n,L

∗ λn ∗
1

C n,L

+ ...

+V ∗ 1

C n,A

∗ (λn ∗
1

C n,L

)m

= lim
m→∞

m∑
k=0

V ∗ 1

C n,A

∗ (λn ∗
1

C n,L

)k

= V ∗ 1

C n,A

∗ lim
m→∞

(1− (λn ∗ 1
C n,L

)m+1)

(1− (λn ∗ 1
C n,L

))

= V ∗ 1

C n,A

∗ 1

(1− (λn ∗ 1
C n,L

))

(3.7)

where 1/Cn,A and 1/Cn,L are the service time for attack and normal requests in the bot-

tleneck tier, respectively.

3.3.2 Numerically Solve Attack Parameters

Based on the model, we can infer the damage and elusiveness of our attacks through

damage length and millibottleneck length. Further, if we assign the attack goal and know

system parameters, we can calculate the optimal attack parameters mathematically.

To get some reasonable constant parameters (λ,C i,A,C i,N ,Q) in the model, we estimate

these constants via profiling the service time of each type of request of each component

tier in the benchmark web-site RUBBoS [30](more details in Section 3.5.1), the capacity

of each tier C i can be calculated from the service time. We choose heavy requests (e.g.,

long service time by consuming more system bottleneck resource, detailed explanation in

Section 3.4.2) as attack requests. Table 3.3 lists a group of reasonable values of the constants

for our model profiled in RUBBoS. During the profiling, we choose 2000 legitimate users

with 7-second think time as our baseline experiment. All the transactions supported by

RUBBoS are terminated in MySQL, each transaction follows a static page-load terminated
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Table 3.3. Constant parameters estimation profiled in RUBBoS experiment with 2000
concurrent users.

Server Tier (i) λi Ci,A Ci,L Qi

Apache 1 280 3443 3657 55
Tomcat 2 0 1300 1987 25
MySQL 3 280 280 725 6

in Apache, and no transaction terminates in Tomcat. Thus, the request rate of each tier

λi is 280, 0, and 280, respectively. We set the queue size of each server Q i satisfying the

condition C1 in Equation (3.2).

Suppose that we set our attack goal as 95th percentile response time longer than 1

second which is a severe long-tail latency problem for most e-commerce websites [18–21],

and the duration of a millibottleneck less than 0.5 seconds in the bottleneck tier such

that the average utilization can be at moderate level (e.g., 50-60%) to bypass the defense

mechanisms. If we assume the burst interval T is 2 seconds, then the input to the model

can be two inequations: damage length PD is bigger than 0.1 seconds and millibottleneck

length PMB is less than 0.5 seconds. Further, we turn these two inequations to L as a

function of B, the others parameters are all constants(Inequation (3.8) and (3.9)).

L >=
n∑

i=1

li + 0.1 =
Qn

(λn +B − Cn,A)

+
(Qn−1 −Qn)

(λn−1 + λn +B − Cn,A)

+...+
(Q1 −Q2)

(
∑n

i=1 λ i +B − Cn,A)
+ 0.1

(3.8)

L <= 0.5 ∗ (1− λn ∗
1

Cn,L

) ∗ Cn,A

B
(3.9)

Thus, the problem of selecting a set of optimal attack parameters (B,L,V,T ) can become

a nonlinear optimization problem. Although nonlinear optimization problem is hard to

solve since there exist multiple feasible regions and multiple locally optimal points in those
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regions, we can add more constraints to narrow the range of feasible regions. For instance,

the burst length obviously should be less than target millibottleneck length (e.g., burst

length L less than 0.5 seconds).

Substituting the constant parameters in Inequation (3.8) and (3.9), we can get an

unique feasible region as the potential attack parameters shown in Figure 3.2, a. In real

cloud production settings, the queue size must be diverse according to the capacity of the

websites. In Figure 3.2, b, we can see that as the queue of the front tier (e.g., Apache)

increases from 30 to 80, the feasible region reduces; when it increases to 130 (the red line),

the two inequations do not overlap, which implies that there is no solution to satisfy our

predefined attack goal. The fundamental reason is that our attack goal is too strict, which

seems to be an impossible mission. Note that when the queue of the front tier is 80, in the

strictest attack target cases (PD >= 0.2 seconds, the red line in Figure 3.2, c; or PMB <=

0.3 seconds, the red line in Figure 3.2, d), there is also no solution that can solve the attack

parameters of our attacks. We will further discuss how to deal with the non-solution cases

in Section 3.4.1.

3.3.3 Simulation Experiments

The numerical solver in the previous section does not consider many aspects of the real

system (e.g., the competition of the free position in the queue between attack requests and

normal requests, overloaded attack requests can be dropped, etc.). To further validate the

simple model, we present results from Java Model Tools(JMT) [63] in which such limitations

are absent. JMT is an open source suite for modeling Queuing Network computer systems.

It is widely used in the research area of performance evaluation, capacity planning in n-tier

systems. Thus, it is a natural choice to evaluate the impact of our attacks in n-tier systems.

We modify the JMT code and simulate the bursts of attack requests for our attacks with

the configurable attack parameters in our model.

Given the proposed model and the idea of solving the nonlinear optimization prob-

lem, we can get the feasible region of attack parameters. We initialize the parameters in
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Figure 3.2. Numerically solve the optimal attack parameters. Solid line depicts damage
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the target zone is below the dash line.

JMT similar to the setting of our numerical solver, and choose a potential optimal point

(400,0.215) in Figure 3.2, a as our attack parameters, the attack rate B is 400 requests per

second and the burst length L is 0.215 seconds, so the attack volume per burst V is 86 (see

equation (3.1)) if all the attack requests will not be dropped by the target system.

Figure 3.3 shows the results of one burst during 1 second time period using fine-grained

monitoring (e.g., 50 milliseconds) in JMT expriment. Figure 3.3, a illustrates the process

of filling up all the queues in the n-tier system. Note that the queue of MySQL, Tomcat,

and Apache is overflow from down-stream tiers to up-stream tiers overtime. The CPU

saturations of the bottleneck tier MySQL last approximately 400 milliseconds as shown in
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Figure 3.3, b, less than the expected value 500 milliseconds calculated by our model, since

overloaded attack requests are also dropped by the front tier which will not go through the

front tier and into the bottleneck tier. Figure 3.3, c shows dropped requests perceived by

attackers and legitimate users in the corresponding burst. Note that the dropped requests

span two sampling duration (100 milliseconds), validating our model expectation for the

dropped length. The interesting observation is that the dropped requests from attackers

is bigger than ones from legitimate users at the time of 0.15, the opposite phenomenon

happens in the next sampling windows at the time of 0.2. This implies that the requests

from the attacker and ones from the legitimate users compete the available position of

the queue freed by the outgoing request in the n-tier system during damage period [62],

eventually the loser will be dropped.
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Figure 3.3. Results of one burst during 1 second period using fine-grained monitoring (50
milliseconds) in JMT experiment.

47



However, when we aggregate the data of the legitimate users during the 3-minute

simulation experiment, the amount of dropped requests is 1099 and the total requests is

54901, thus the actual drop ratio for the legitimate users is 2%, which is far from the

predefined goal of the drop ratio 5%. From this observation, we should calibrate the drop

ratio from Equation 3.6 to

ρ(T) =
PD ∗ ρ(L)

T
(3.10)

Here, ρ(L) refers to the average drop ratio for the requests of the legitimate users during

damage length, which represents the competition ability for attack requests compared to

normal requests. In the previous JMT experiment, ρ(L) is approximately 0.4.

Due to the existence of the competition between the attackers and the legitimate users,

the attackers may fail to get the predefined attack goal (e.g., 95th percentile response

time > 1 second) by using the recommended attack parameters of the proposed model.

We further investigate how to increase the competition ability of attack requests, and the

drop ratio of the requests from the legitimates users during damage length, namely ρ(L).

Finally, the attackers can choose the optimal attack parameters to achieve high damage

with low cost and high stealthiness. For simplicity, we assign attack interval T as fixed value

(say, 2 seconds), since our focus on this chapter is to investigate how to effectively trigger

the millibottlenecks which is predominantly determined by the other three parameters

(B,L,V ). Due to interdependent relationship of these three parameters in Equation 3.1, we

fix one parameter (L or V ), then observe the impact with various attack rate B. We still

consider the marked potential optimal point (400,0.215) in Figure 3.2, a as our baseline

attack parameters.

First, we fix burst volume V as 86, and select a set of attack rate (from 300 to 800)

to conduct our attack experiments using JMT. Table 3.4 shows that as the attack rate

increases, the drop rate ρ(T) accordingly increases, which confirms that higher attack

request rate, compared to normal request rate, can achieve higher competition ability to

seize the available position in the queue.
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Table 3.4. Fix burst volume V =86. Bigger B higher ρ(T), implying higher competition
ability for the burst with larger B.

Attack Para. Legitimate Users
B L Dropped Reqs. Total Reqs. ρ(T)
300 0.285 1096 55998 0.0196
400 0.215 1099 54901 0.0200
500 0.173 1705 54292 0.0314
600 0.144 2082 53915 0.0386
700 0.123 2326 53671 0.0433
800 0.108 2399 53598 0.0448

Next, we fix burst length L as 0.215 seconds, and select another set of attack rate to

conduct our JMT experiments. Figure 3.4 depicts ρ(T) and ρ(L) as a function of the ratio

of attack rate and service rate for the bottleneck tier. We mark two vertical lines to split

up into three zones with various attack rate B. (1) In zone a, B is less than C n,A, the drop

ratios are all zero, since the attack rate is too low to trigger an effective millibottleneck to

lead to cross tier queue overflown in the target system, which violates the condition C2 in

Equation 3.2. (2) In zone b, B is bigger than C n,A , the drop ratio increases non-linearly as

B increases. Observe that ρ(L) of Normal Users is a little bit bigger than ρ(L) of Attackers,

because B is bigger than λn. In this case, the requests from the attackers can seize the

available position in the queue with a more highly probability than ones from normal users.

(3) In zone c, B is bigger than C 1,A, the attack requests are directly dropped by the most

front tier, thus the increase of B does not contribute to the drop ratio of the legitimate

users, it only increases the drop ratio itself. Given this observation, we should choose a

moderate B until the attack goal is achieved (e.g., the green horizontal line in Figure 3.4).

3.4 Tail Attacks Implementation

3.4.1 Overview

As mentioned before, the analytical model used in the numerical solver analyzes the

simple scenario skipping many aspects of the system reality (e.g., the competition for the

free position of the queue between attack requests and normal requests, overloaded attack
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is achieved (e.g., the green horizontal line is a target).

requests can be dropped, etc.), and the simulation experiments show more complicated

cases involving the absent system reality. However, our attacks do not consider more

realistic case with dynamics of baseline workload (e.g., for e-commerce applications, the

baseline workload during the day time is usually significantly higher than that during

the mid-night period) or system state(e.g., dataset size change). For example, the peak

workload occurs at approximately 1:00 p.m. during the week of Thanksgiving [1]. A set

of effective attack parameters of Tail Attacks may become failed ones over time, either

it can not trigger millibottlenecks (not enough attack requests) or it might trigger the

defense alarm of the target system (too frequent or massive attack requests). How can

we dynamically adjust the attack parameters catering to instant system state and baseline

workload is a big challenge for Tail Attacks. The static attack parameters in the dynamical

environment may make the attack either invalid like a “mosquito bite” or easily exposed to

the detection mechanisms. In this section, we implement a feedback control-theoretic (e.g.,

Kalman filter) framework that allows attackers to fit the dynamics of background requests

or system state by dynamically adjusting the optimal attack parameters in Figure 3.5.
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Figure 3.5. A feedback control framework which can launch effective Tail attacks to fit
the dynamics of background requests or system state by dynamically adjusting the optimal
attack parameters.

Via our best practice, we find that the attack rate should not be invariable to maximize

the attack effectiveness and stealthiness. Kuzmanovic et al. [37] suggest a double-rate DoS

steam to minimize the attack cost. We design a three-stage transmitting strategy to send

one burst: Quickly-Start, Steadily-Hold and Covertly-Retreat. In Quickly-Start stage, the

attacker sends the burst of requests at a high rate to quickly fill up all the queues in the

n-tier system, heavy requests (detailed explanation in Section 3.4.2) are preferred because

it can consume more bottleneck resources and occupy the queue longer with low cost and

high stealthiness, the amount of heavy requests during this stage should be large enough

to temporarily saturate the bottleneck resource in the target system [59]. In Steadily-Hold

Stage, the attackers should try their best to guarantee that the queue can be overflown

during this stage and attack requests can seize the free position in the queue with highly

probability. Heavy requests are not necessary to serve as attack requests during this stage.

We prefer light requests to hold on queue, such that in the last Covertly-Retreat stage,

the attack requests can quickly and covertly leave the systems. In Covertly-Retreat stage,

there is no attack request to be sent out. Figure 3.6 demonstrates the queue shifts during a

three-stage burst. Through the strategy of variable attack rate and various attack requests,

we can solve the insolvable cases in Section 3.3.2 by carefully choosing less heavy requests

as attack requests.

51



 0

 100

 200

 300

 400

 0  0.2  0.4  0.6  0.8  1

Q
u

eu
e 

U
sa

g
e 

[#
]

Timeline [s]

Apache queue size

Start Hold(Damage Length) Retreat

Millibottleneck Length

Apache Tomcat MySQL

Figure 3.6. Queue shifts during a three-stage burst (quickly-start, steadily-hold, covertly-
retreat).

Return back to our model in Equation 3.5, we can see the relationship between PD

and the attack rate B were nonlinear. We can transfer PD as a function of V and B

using equation 3.1:

PD =
V

B
−

n∑
i=1

li (3.11)

If we fix the attack rate B, mathematically, PD and the attack volume V have a linear

relationship; the same as PMB (see Equation 3.7). These linear relationships provide us

with a firm theoretical foundation to dynamically adapt the optimal attack parameters

fitting the changes of system state and baseline workload. The overall control algorithm

can be described in Algorithm 1.

3.4.2 Estimator

The Estimator, as illustrated in Figure 3.5, estimates three critical metrics in the control

algorithm implementing the proposed model: service time of the requests, damage length

PD, and millibottleneck length PMB. We use a prober to monitor attacks and infer damage

length PD, coordinate and synchronize bots to launch attacks and infer millibottleneck

length PMB.

Service time of a HTTP request is the time that the target web system needs to process

the request without any queuing delay. It is easy to calculate the end-to-end response time
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Algorithm 1 Pseudo-code for the control algorithm

1: procedure AdaptAttackParameters
2: AttackReqST← EstimateServiceT ime
3: DamLen← EstimateDamageLenByProber
4: MBLen← EstimateMilliBottleneckLenByBots
5: if DamLen = 0 then
6: /* can not fill up queue, increase B */
7: B← B + stepB
8: else
9: gapDamLen← Abs(DamLen - targetDamLen)

10: stepV← gapDamLen/AttackReqST
11: if DamLen > targetDamLen then
12: /* reduce damage length by decreasing V */
13: V← V− stepV
14: else if DamLen < targetDamLen then
15: /* increase damage length by increasing V */
16: V← V + stepV
17: else
18: /* current values are the optimal parameters. */
19: end if
20: end if
21: if MBLen > targetMBLen then
22: /* set max V */
23: Vmax← targetMBLen/AttackReqST
24: V← Vmax
25: /* choose less heavy requests as attack requests */
26: end if
27: end procedure

of a request using two time stamp of sending requests and receiving responses [67], we

term them start-time and end-time of a HTTP request. The end-to-end response time of

a request equals the difference between end-time and start-time. Typically, the end-to-

end response time of a HTTP request involves three parts: the network latency between

the client and the target web application, the queuing delay in the n-tier system, and the

service time of each server. The network latency can be measured using the ping command.

When the target system is at low utilization, the queuing effect inside the target system

can be ignored. Thus, we can approximately estimate the service time of any HTTP

request supported by the target web system as the end-to-end response time subtracting
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the network latency when the target system is in the time block with a low workload. Since

the service time of the estimated request may drift over time (e.g., due to changes in the

data selectivity and the network latency variation) in real applications, we measure the

service time of a HTTP request multiple times and take the average.

Previous research results [9] show that the predominant part of the service time of

a request is spent on the bottleneck resource in the system. We call the requests that

heavily consume the bottleneck resource as heavy requests with long service time (e.g., the

request querying multi-tables in the database) while those consume no or little bottleneck

resource as light requests with short service time (e.g., static requests) [59]. Thus, the

prober naturally exploits light requests to monitor the impact of the attacks since it can

be more elusive under the radar without causing any alert of the target web system; and

the bots can take heavy requests as candidate attack requests since it can be more efficient

causing millibottlenecks and cross tier queue overflow. More advance technology about

profiling heavy requests will be discussed in Section 3.7. Through profiling and exploiting

heavy requests [59], Tail Attacks can transiently saturating the critical bottleneck resource

(e.g., database CPU) of the target systems, which can saturate the critical resource of the

system with much lower volume (thus less bots are needed) compared to that of traditional

flooding DDoS attacks which usually try to fully saturate the target network bandwidth.

To estimate PD, the prober needs to send probing requests (e.g., light requests) to

the target system at a predefined rate and record start-time and end-time of a probing

request. The recommended sending interval of probing requests is less than the target

damage length, in the case, any probing request may not miss the period of overflown queue

caused by an attack burst and the prober can sense PD [35]. Figure 3.7, a illustrates the

implementation approach to estimate PD as start-time of the last dropped probing request

subtracting start-time of the first dropped probing request during a burst. Since some

probing requests may probably seize the free position in the queue and are not be dropped

during the damage length, we can calibrate PD by multiplying ρ(L) (see equation 3.10).
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Some websites may send some alarm to the users if they send the requests at a very high

rate. In this case, the prober can send probing requests at an acceptable rate for the target

web system and estimate drop ratio during a sampling period, then our control algorithm

can exploit drop ratio as the target criterion to dynamically adjust the attack parameters.

After sending a burst of attack requests (e.g., heavy requests) to the target web system,

the bots can record start-time and end-time of an attack request and estimate PMB. We

only count the non-dropped attack requests, since the dropped request involves TCP re-

transmission time-out. There are two options to infer PMB. One way is end-time of the last

non-dropped attack request subtracting start-time of the first non-dropped attack request

during one attack interval. As we mention before, the end-to-end response time of a HTTP

request involves three parts: the network latency, the queuing delay, and the service time.

In this way, the result overcharges a length of the network latency. The other option of

inferring PMB is end-time of the last non-dropped attack request subtracting end-time of

the first non-dropped attack request during one attack interval shown in Figure 3.7, b. In

this way, it undercharges a length of the service time. For the concrete environments of a

special website, the attacker can choose any approach to estimate millibottleneck length.

In our evaluation section, we choose the second one, since the network latency is much

longer than the service time in our RUBBoS environment.

3.4.3 Controller

So far, we discuss many aspects that can influence the effectiveness of our attacks.

In the model, the competition for the free slot of the queue between attack requests and

normal requests may impact precision of damage length, and the dropped attack requests

may decrease millibottleneck length. For Estimator, the network latency variation and

the drifted target system state might reduce the accuracy of inferring damage length and

millibottleneck length in our implementation. All of aspects lead to the observing and

measuring inaccuracy, and result in the invalidation of launching an effective attacks using

our control algorithm. To mitigate these negative impacts for our control algorithm, we
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(a) Estimate damage length by
start-time of the last dropped prob-
ing request subtracting start-time
of the 1st dropped probing request
during an attack burst.

(b) Infer millibottleneck length
by end-time of the last non-
dropped attack request subtract-
ing end-time of the 1st non-
dropped attack request during a
interval.

Figure 3.7. Demonstration of inferring damage length and millibottleneck length by Esti-
mator.

adapt a popular feedback-based control tool, Kalman filter [68]. On the one hand, it can

take past measurements into account for implementing our feedback control algorithm,

reducing the impact of the process noise (e.g., baseline workload and system state). On

the other hand, it can mitigate the measurement noise due to inaccuracy of the estimator.

Let z(k) be the measurement of PD in k -th burst by Estimator. Since PD is a linear

function of burst volume V (see equ. (3.11)), we can define x(k) using a linear dynamical

system model:

SystemDynamics : x(k) = x(k − 1) + U(k) + v(k) (3.12)

MeasurementDomain : z(k) = x(k) + w(k) (3.13)

where the variables v(k) and w(k) are the process noise (e.g., dynamics of baseline workload)

and the measurement noise (e.g., imperfect estimation by Estimator), respectively. U(k) is

the expected control result, a linear function of burst volume V.
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Let x̂(k | k−1) be a priori estimate of state parameter x at burst k -th given the history

of all k-1 bursts, and let x̂(k | k) be a posteriori estimate of state parameter x at k -th burst.

Further, let P(k | k) be a posteriori error covariance matrix which quantifies the accuracy

of the estimate x̂(k | k). The Kalman filter executes recursively for each new observation

including two phases: Predict in which a priori estimate of state and error matrix are

calculated, and Correct in which a posteriori estimate of state and error matrix are refined

using the current measurement. The Kalman filter model for our control framework is

given by:

Predict (Time Update)

x̂(k | k − 1) = x̂(k − 1 | k − 1) + U(k) (3.14)

P(k | k − 1) = P(k − 1 | k − 1) + V (k) (3.15)

Correct (Measurement Update)

Kg(k) =
P(k | k − 1)

(P(k | k − 1) +W (k))
(3.16)

x̂(k | k) = x̂(k | k − 1) + Kg(k)(z(k)− x̂(k | k − 1)) (3.17)

P(k | k) = (1−Kg(k))P(k | k − 1) (3.18)

where W(k) and V(k) are the covariances of w(k) and v(k), respectively. In practice, we

can estimate these two noise covariances using automatic mathematical tools (e.g., autoco-

variance least-squares method [69]) or manual observation to tune the optimal value. Kg(k)

is termed the Kalman gain which represents the confidence index of the new measurement

(z(k)) over the current estimate (x̂(k | k−1)). If Kg(k) equals 1, it implies that the attacker
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totally trust the measurement, the effectiveness of adjusting the attack parameters in our

attacks is totally depending on the accuracy of the estimated value by Estimator.

Using the Kalman filter, the Controller in Figure 3.5 can predict the required attack

parameters at k-th burst given the historical results of all k-1 bursts, dynamically command

the new parameters to the bots, and automatically and effectively launch Tail Attacks.

3.5 Real Cloud Production Evaluation

3.5.1 Tail Attacks in Real Production Settings

To evaluate the practicality of our feedback control attack framework in the real cloud

production settings, we deploy a representative benchmark website in the most popular

two commercial cloud platforms (Amazon EC2, Microsoft Azure) and one academic cloud

platform (Cloudlab [45]).

We adopt RUBBoS [30], a representative n-tier web application benchmark modeled

after the popular news website Slashdot. We configure RUBBoS using the typical 3-tier or

4-tier architecture. A sample setting EC2-1414-6K in Table 3.5 is 1 Apache web server, 4

Tomcat application servers, 1 C-JDBC clustering load-balance server, 4 MySQL database

servers deployed in Amazon EC2, and 6000 concurrent legitimate users. RUBBoS has a

workload generator to emulate the behavior of legitimate users to interact with the target

benchmark website. Each user follows a Markov chain model to navigate among different

webpages, with averagely 7-second think time between every two consecutive requests.

Through modifying the RUBBoS source code, we simulate various baseline workload (e.g.,

variable concurrent users during the experiment). Meanwhile, in our experiments we adopt

a centralized strategy to coordinate and synchronize bots [33,40,41] (more discussion about

distrubuted bots coordination and synchronization in Section 3.7). All the bots are in the

same location to rule out the impact of the shift of network-latency. We control a small

bot farm of 10 machines (one of which serves as a centralized controller), synchronized by

NTP services, which can achieve millisecond precision [70]. Each bot uses Apache Bench to

send intermittent bursts of attack HTTP requests, commanded by our control framework.
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All the VMs we run are 1 vCPU core and 2GB memory, which is the basic computing

unit for the commercial cloud providers. We select HDD disk since our experimental

workloads are browse-only CPU intensive transactions. We select t2.small instance ($0.023

per hour) in Amazon EC2 us-east-1a zone, and A1 ($0.024 per hour) instance in Microsoft

Azure East US zone. They have similar prices and hardware configurations. However, the

CPU core in EC2 (2.40GHz Intel Xeon E5-2676 v3) is more powerful than the one in Azure

(2.10GHz AMD Opteron 4171 HE or 2.40GHz Intel Xeon E5-2673 v3). The worst one is

in NSF Cloud (2.10GHz Intel Xeon E5-2450), where we run the VMs in Apt Cluster in the

University of Utah’s Downtown Data Center .

For the baseline workload, we have two chosen criteria: the bottleneck resource uti-

lization (e.g., CPU utilization or Network bandwidth) is less than %50 (Column 6 and 8

of Table 3.5), and no long-tail latency problem exists in without-attacks cases shown in

the Table 3.1. Because EC2 has more powerful CPU that we used in our experiments, it

can serve higher baseline workload than the other two. The network overhead can be the

bottleneck resource in EC2 platform even though CPU is at low utilizations [71]. In our

experiments, MySQL CPU is the bottleneck tier in Azure and NSF Cloud due to the high

resource consumption of database operations.

We pre-define our attack goal as the 95th percentile response time longer than 1 second

and the utilization of the bottleneck resource less than 50%, and fix the attack interval as

2 seconds. Thus, we need to control damage length PD longer than 100 milliseconds,

millibottleneck length PMB less than 500 milliseconds.

Column 2 to 5 of Table 3.5 show the corresponding model parameters in our real cloud

production setting experiments controlled by our attack framework. It clearly shows that

our attacks controlled by our algorithm can achieve the predefined targets (5% drop ratio

ρ(T), damage length PD < 100ms, millibottleneck length PMB < 500ms). EC2 has more

powerful CPU, so it requires more attack requests per burst V to launch a successful

attack. As the servers scale out (from 111 to 1212, 1414), the n-tier system can service
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Table 3.5. The corresponding parameters and bottleneck resource utilization of Tail Attacks
in real production settings. W/o att.: Without attacks, Att.: under Tail Attacks, CPU:
MySQL CPU usage, NW: Apache network traffic.

CPU NW
Setting V PD ρ(T) PMB (%) (MB/s)

(#) (ms) (%) (ms) W/o att. Att. W/o att. Att.
EC2-111-2K 202 96.4 5.64 287 18.8 27.3 116 167

EC2-1212-4K 217 96.9 5.47 297 16.0 20.2 239 282
EC2-1414-6K 234 105.3 5.89 271 15.2 18.1 352 401
Azure-111-1K 113 100.8 5.26 346 41.2 70.6 60 76

Azure-1212-2K 137 99.1 5.56 479 34.6 58.3 119 141
Azure-1414-3K 156 99.9 5.57 408 19.5 25.6 177 195

NSF-111-1K 97 101.0 5.40 453 49.1 76.8 58 72
NSF-1212-2K 112 96.7 5.75 490 48.4 62.4 118 137
NSF-1414-3K 131 99.4 5.22 470 34.6 51.0 173 186

more legitimate users, at the same time, in order to launch Tail Attacks it requires higher

V due to their higher capacity, which means that bigger websites need larger botnet to

attack. Column 7 and 9 of Table 3.5 show the average CPU utilization of MySQL tier

and the average network traffic of Apache tier, which are the bottleneck resource in our

experimental environment. Under our attacks in the real cloud production settings, the end

users encounter the long-tail latency problem (see Table 3.1). However, all the bottleneck

resources are under moderate average resource utilization even in large scale case (e.g., CPU

is 25.6% in Azure-1414-3K, and NW is 401MB/s in EC2-1414-6K). These experimental

results show that our attacks can cause significant long tail latency problem, while the

servers are far from saturation, guaranteeing a high level stealthiness.

Figure 3.8 further illustrates the 3-minute detailed experimental results with various

baseline workload under our attacks launched by our control framework in NSF-1212 set-

ting. Figure 3.8, a shows baseline workload changes from 2000 to 500 concurrent users at

the middle point of the experiment (each user has 7-second think time between two web-

pages). Note that the shift of baseline workload in this case is different from the previous

cases in which we scale out the servers. Figure 3.8, d shows the required burst volume
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dynamically adjusted by our framework, a sudden increase at the middle due to the de-

crease of baseline workload. Figure 3.8, b and Figure 3.8, c depict damage length and

millibottleneck length estimated by the prober and the bots, respectively. The measured

average value of two critical metrics of our model are successfully controlled in the target

range. Figure 3.8, e and Figure 3.8, f depict the drop ratio during every attack interval and

the CPU utilization of MySQL using 1 second granularity monitoring, respectively, which

match our predefined attack goal to a great extent. In general, through the RUBBoS ex-

periments in real cloud production settings, we can validate and confirm the practicality

of our attack control framework.

3.5.2 Tail Attacks under IDS/IPS systems

Next, in order to evaluate the stealthiness of Tail Attacks under the radar of state-

of-the-art IDS/IPS systems, we deploy some popular defense tools in the web tier in our

RUBBoS environments to evaluate whether our attacks can be detected by them.

Typically, the popular solution to mitigate the application layer DDoS attacks is iden-

tifying abnormal user-behavior [56, 57, 72–74]. Snort [43] is a signature rules based Open-

Source IDS/IPS tool that is widely used in practice for DDoS defense, the users can cus-

tomize the alert rules by setting reasonable thresholds in the specific systems. We set alert

rules following some user-behavior models in Snort to evaluate whether our attacks deviate

from the model (judging based on predefined thresholds). In the following experiments,

we configure 2000 concurrent legitimate users, and our attack goal is to achieve the 95th

percentile response time longer than 1s for these legitimate users.

To validate the user behavior model, we take request dynamics model [44] as an ex-

ample. The authors analyzed the distribution of a user’s interaction with a Web server

from a collection of Web server logs, categorized four session types (searching, browsing,

relaxed and long session), and modeled the features for each type of session based on av-

erage pause between sessions. Typically, average inter-request interval for searching and

browsing sessions is less than 10 seconds. RUBBoS [30] also models the inter-request inter-
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Figure 3.8. Results of Tail Attacks on RUBBoS web application in a real cloud production
setting
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val per session as a Poisson process with the mean as 7, which means an average 7-second

think time between two webpages for each session. In this case, we can calculate the 95%

confidence interval as (2.814, 14.423). We can set the minimal boundary of the interval

(e.g., rounded to 3, the statistical granularity is seconds in Snort) as the alert threshold to

validate whether our attacks deviate the RUBBoS model, since the smaller alert threshold

can lead to less false positive error. We use the “detection filter” property in Snort to define

the alert rules monitoring inter-request rate for each IP, which generate an alert once the

amount of requests from the same IP exceeds the predefined threshold during a sampling

statistical period. Column 1 and 2 of Table 3.6 depict the threshold and the sampling

interval for these alert rules, respectively.

We use RUBBoS client to simulate 2000 concurrent legitimate users and craftily control

our bots catering to the inter-request model in RUBBoS to bypass the above alert rules

in Table 3.6 while achieving our attack goal. Due to the limited numbers of IPs, we

can not have enough IP address to simulate the 2000 legitimate users and the bots from

real IP address to evaluate the above detection rules in Snort. However, we can map a

session to a individual IP address and implement the same detection algorithm using the

“detection filter” property of Snort to validate the above alert rules. We conduct a 3-

minute successful attack experiment in our RUBBoS websites. In our case, to achieve the

attack goal, the required attack parameters are V as 300, L as 50 and I as 3. To follow the

inter-request model in RUBBoS (alert threshold as 3), it requires 301 totally-synchronized

bots (one session simulates one bot in our experiments and sends one request in more than

3s interval) while avoid triggering the alerts (deviating from the model). Column 3 and

4 of Table 3.6 report the traced alert number from the bots and the legitimate users for

these rules, respectively. As a result, our attacks can be totally invisible to these alert rules.

Note that as the sampling interval increases the alerts from the legitimate users decrease,

the reasonable sampling interval can reduce the false positive errors (typically the interval

should be on the order of minutes). Another important guide to our attacks is that as the

63



sampling interval increases, the threshold of the rules also has to increase, which can give

us more flexible options to send the attack requests using different intervals (e.g., in the

above case, less than 10 requests every 30s interval per session, or less than 20 requests

every 60s interval per session). To choose which sending pattern, we can further learn from

the other user-behavior models to make our attacks even more stealthy.

Table 3.6. The attacker can successfully predict the inter-request model. Less the sam-
pling period, higher alerts from the legitimate users, indicating higher false positive error.
However, the attacker can trigger no alert by carefully controlling the request pattern.

Alert Rule Parameters Triggered Alert Number
Threshold Sampling Period Bots Legitimate Users

1 3s 0 19262
5 15s 0 7032
10 30s 0 1074
15 45s 0 174
20 60s 0 23
50 150s 0 2
100 300s 0 0

Someone may argue that the “no alert” results are got from the assumption that the

attackers comprehensively know the alert thresholds of the user-behavior model, such that

they can design a corresponding attack pattern to avoid be detected. Most user-behavior

models are public to both the defenders and the attackers, the only gap is the specific alert

threshold and rules, which typically are learned from the server’s past logs for their anomaly

detection systems by the defenders of specific websites [44]. However, the attackers can

use the questionnaire approach to similarly estimate the real users‘ behaviors, and use a

conservative value as the potential threshold to design the attack pattern with the price

of increasing more bots shown in Table 3.7. The four rows in Table 3.7 show four cases

with different predicted values (3, 6, 12, 24). Obviously, as the predicted value is more

conservative, it requires a bigger botnet (minimal size is 2400 when the prediction is 24).

In the ‘24’ case, the attacker must split the 2400 bots into 8 groups, each group takes turn

to send a burst of 300 requests in every 24-second interval.
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Table 3.7. The attacker conservatively predicts the inter-request model. To achieve a burst
with 300 requests in every 3 seconds (V=300, L=50, I=3), more conservative predict needs
bigger botnet. 1G.: 1Group, 2G.:2Groups, 4G.:4Groups, 8G.:8Groups, minS.:minimal Size,
minG.:minimal Group.

Inter-request Model Botnet Designed Attack Pattern
Actual Predicted minS minG 1G. 2G. 4G. 8G.

3 3 300 1 1/3s 2/6s 4/12s 8/24s
3 6 600 2 - 1/6s 2/12s 4/24s
3 12 1200 4 - - 1/12s 2/24s
3 24 2400 8 - - - 1/24s

3.6 Detection and Defense

Here, we consider a solution to detect and defend against Tail Attacks. There exists

no easy approach to accurately distinguish the attack requests from legitimate requests.

Instead, we can identify the attack requests by detecting the burst and matching the

bursty arrivals to millibottlenecks and cross tier queue overflown (Event2 and Event3 in

Section 3.2). We present a workflow to mitigate our attacks involving three stages: fine-

grained monitoring, burst detection, and bots blocking.

The unique feature of our attacks is that we exploit the new-found vulnerability of mil-

libottlenecks (with subsecond duration) in recent performance studies of web applications

deployed in cloud [8–10]. In order to capture millibottlenecks, the monitoring granularity

should be less than the millibottlenecks period in millisecond level. For example, if the

monitoring granularity is 50ms, it can definitely pinpoint the millibottleneck longer than

100ms, probably can seize the millibottleneck in the range of 50ms to 100ms, but absolutely

can not capture the millibottleneck less than 50ms. Thus, how to choose the monitoring

granularity is depending on the observation and specific duration of the target bottlenecks.

Through fine-grained monitoring, we may observe a bunch of spike for each metrics

(e.g., CPU utilization, request traffic, queue usage, etc.). However, our purpose is to detect

the burst of attack requests, so we must discriminate the actual attack bursts from them.

Based on the unique scenario of our attacks in Section 3.2, we can define our attack bursts
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in which all the following events occur simultaneously: very long response time requests

(dropped requests), cross tier queue overflown, millibottlenecks (e.g., CPU utilization, I/O

waiting), and burst of requests. If all the events are observed in the same spike duration,

we can regard the spike duration as a potential attack burst.

Once we identify the bursts of Tail Attacks, the next task is to distinguish the requests

of the bots from the requests of the legitimate users during the burst and block them. The

attacker, in our attack scenario, aims to coordinate and synchronize the bots to sending

bursts of attack requests during short “ON” burst period and repeat the process after long

“OFF” burst period as introduced in Section 3.2, we can ideally introduce a new request

metric that quantifies the suspicion index of the incoming requests by aggregating the

requests statistics during “ON” burst and “OFF” burst for further analysis. Specially, we

define the suspicion index for each IP address as follows:

SIIP =
NBIP

NIP

(3.19)

where NBIP and NIP are the number of requests for each IP during “ON” burst and the

attack interval T (including “ON” and “OFF” burst), respectively. If SIIP for a IP is close

to 1, the IP is likely to be a bot; on the other hand, SIIP of the legitimate user can be

approximately the target attack drop ratio (e.g., 0.5 if the target is 95th percentile response

time longer than 1 second). Figure 3.9 shows Probability Density Function of SIIP in the

RUBBoS experiment in Section 3.5.1. The red and green bars represent the suspicion index

of the bots and the 2000 legitimate users, respectively. In this way to identify bots, the

false positive and false negative error can be close to 0 with 100% high precision.

3.7 Discussions

3.7.1 Impact of load balancing

Some web applications adopt load balancing (e.g., Amazon Elastic Load Balancing [75])

in front of the system to distribute load across multiple web servers. This type of load
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Figure 3.9. Distinguish the bots from the legitimate users via bi-modal suspicion index
distribution.

balancing works well for stateless servers such as web servers, in which incoming traffic are

supposed to evenly distribute among them. However, whether or not load balancing can

mitigate the effectiveness of Tail attacks depends on the location of the bottleneck resource

in the target web system. For example, if the bottleneck resource is in the web server tier,

load balancing indeed increases the bar of an effective Tail attack since each web server

only receives a portion of total attacking requests, thus higher volume of attacking requests

per burst are needed to create millibottlenecks in the system. On the other hand, if the

bottleneck resource is in a non-scalable tier such as the relational database tier, the load

balancing in front tiers does not help mitigating the effectiveness of Tail Attacks. This is

because no matter which web server an attacking HTTP request arrives at, the database

queries sent out by the HTTP request may eventually converge to the same database server,

and create millibottlenecks there.

3.7.2 Impact of cloud scaling

Large-scale web applications usually adopt dynamic scaling strategy (e.g., Amazon

Auto Scaling [46]) for better load balancing and resource efficiency, however, Tail Attacks

can easily bypass current dynamic scaling techniques, since the control window of the

state-of-the-art scaling mechanism is usually in minute-level (e.g., Amazon CloudWatch

monitoring in a minute granularity), while Tail Attacks are too short (sub-second duration)

for them to catch and take any scaling actions [59]. The main advantage of Tail attacks

is that it is invisible to most monitoring programs and can remain hidden for a long time
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because of the low volume characteristic and the sub-second duration of millibottlenecks

as shown in our experimental results.

3.7.3 Browser compatibility check

Some state-of-the-art defense tools may check the header information of each HTTP

request to determine whether it is sent from a real browser or from a bot. A HTTP request

sent from a real browser usually has completed header information such as “User-Agent”,

while such information may not appear or be difficult to be generated by a bot which only

uses a script language to generate HTTP requests. In addition, some websites such as

Facebook need a legitimate user to login first before any following transactions, especially

heavy query requests (detailed explanations in Section 3.4.2). They may track the cookies

stored in the client side browser in order to keep an active session in the server side; a bot

may not be able to interact with such websites due to the lack of support of a real browser.

We can address these challenges by using PhantomJS [76] to generate attacking HTTP

requests. PhantomJS is a headless web browser without a heavy graphical user interface.

It is built on top of WebKit, the engine behind Chrome and Safari. So PhantomJS can

behave the same as a real browser does. Therefore, an attacker can launch browser-based

Tail Attacks using heavy requests as attack requests by PhantomJS, and the generated

requests will be extremely difficult to distinguish from the requests sent by legitimate

users.

3.7.4 Distributed bots coordination and synchronization

One precondition of Tail attacks is that bots could be coordinated and synchronized

so that the generated HTTP requests are able to reach the target web system within

a short time window. Many previous research efforts already provide solutions, using

either centralized [33, 40, 41] or decentralized methods [35], to coordinate bots to send

synchronized traffic to cause network congestion at a specific network link. Centralized

control can achieve higher level of bots coordination and synchronization, which enables a

more effective Tail Attack compared to decentralized methods. In this chapter we adopt the
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centralized control method to do experiments. On the other hand, a decentralized method

in general is able to coordinate and synchronize more bots than a centralized one, thus

making it possible to target large-scale/high-capacity websites. However, a decentralized

method is more challenging to control the length of each burst of attacking requests arrived

at the target website, thus mitigating the effectiveness of Tail Attacks.

3.8 Related Work

In this section, we review the most relevant work with regard to low-volume application-

layer attacks, which is even stealthier to avoid traditional network-layer based detection

mechanisms [6, 7, 77].

Low-volume DDoS application attacks are characterized by a small number of attack

requests transmitted strategically to the target servers, as an extension of network-layer

low-volume attacks [33–38, 60]. Macia et al. initially proposed low-rate attacks against

application servers (LoRDAS [62]) that send traffic in periodic short-time pulses at a low

rate, sharing the similar on-off attack pattern with our attacks. Slow-rate attacks [61]

deplete system resources on the server‘s side by sending (e.g., slow send/Slowloris [78]) or

receiving (e.g., slow read) traffic at a slow rate. Our attacks share the similar features of

low attack volume with low-rate and slow-rate attacks. However, compared to these two

attacks, our attacks dig more deeply into n-tier architecture applications while LoRDAS

attacks only in 1-tier application server. Our analytical model for n-tier systems can guide

and guarantee our attacks dynamically controlled in a more effective and elusive way by

accurately estimating damage length and millibottleneck length. In addition, slow-rate at-

tacks need to develop well-crafted HTTP header (Slow Headers) or body (Slow Body) thus

expose obvious attack patterns to the defense tools, while Tail Attacks use the legitimate

and normal heavy requests as our attack requests thus hide deeper. More importantly, we

exploit the ubiquity of millibottlenecks (with sub-second duration) and strong dependen-

cies among distributed nodes for web applications, leading to long-tail latency issue with

a higher level of stealthiness than LoRDAS and Slow-rate attacks.
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To mitigate application DDoS attacks, existing solutions typically focus on distin-

guishing application-layer DDoS traffic from the traffic created by legitimate users, such as

abnormal user-behavior in high-level features [56, 72, 73] of surging web pages, in session-

level [57], or in request-level [74]. To be stealthy, for the features of navigating web pages,

our attacks can learn from the user behaviors of a legitimate user; as for session or requests

level of our attacks, we can calculate the required optimized attack volume and botnet size

discuss in Section 3.5. Compared to existing solutions, our proposed countermeasure can

be tied to the unique feature of our attacks and accurately capture the bots.

3.9 Conclusion

We described Tail Attacks, a new type of low-volume application layer DDoS attack

in which an attacker exploits a newly identified system vulnerability (millibottlenecks and

resource contention with dependencies among distributed nodes) of n-tier web applications

to cause the long-tail latency problem of the target web application with a higher level of

stealthiness. To thoroughly comprehend the attack scenario (Section 3.2), we formulated

the impact of our attacks in n-tier systems based-on queueing network model, which can

effectively guide our attacks in a stealthy way (Section 3.3). We implemented a feedback

control-theoretic (e.g., Kalman filter) framework that allows attackers to fit the dynam-

ics of background requests or system state by dynamically adjusting the optimal attack

parameters (Section 3.4). To validate the practicality of our attacks, we evaluated our

attacks through not only analytical, numerical, and simulation results but also benchmark

web applications equipped with state-of-the-art DDoS defense tools in real cloud produc-

tion settings (Section 3.3 and Section 3.5). We further proposed a solution to detect and

defense the proposed attacks, involving three stages: fine-grained monitoring, identifying

bursts, and blocking bots (Section 3.6). More generally, our work is an important contri-

bution towards a comprehensive understanding of emerging low-volume application DDoS

attacks.
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CHAPTER 4
MEMCA: MEMORY ATTACKS ON THE NEIGHBOR’S CPU

In this chapter, we investigated the feasibility of resource contention and performance

interference to locate a target VM (virtual machine) and degrade its performance. We

explored external Very Short Intermittent DDoS Attacks by modeling the n-tier Web ap-

plications with queuing network theory and implementing the attacking framework based-

on feed-back control theory. Through MemCA attacks on the RUBBoS benchmark web

applications in our private cloud, we confirmed that the emerging elastic Cloud Computing

can not defend against ever-evolving new types of DDoS attacks, since they exploit vari-

ous newly discovered system or vulnerabilities even in the cloud platform, bypassing not

only the elasticity mechanisms of Cloud Computing but also the state-of-the-art detection

mechanisms of performance interference.

4.1 Introduction

Distributed Denial-of-Service (DDoS) attacks for web applications such as e-commerce

are increasing in size, scale and frequency [1,2]. On October 21, 2016, A number of popular

websites, like Twitter and Spotify, can not be accessed by some users worldwide, due to two

DDoS attacks on the DNS servers of Dyn company [79]. On the other battlefield, Berkeley’s

paper “above the clouds: a Berkeley view of cloud computing” [3] first introduced Cloud

Computing in 2009, they predicted the top one opportunity of Cloud Computing is that it

can use elasticity to defend against DDOS attacks due to its easily scaling for fitting the

dynamic user requirements, even serving the attack traffic. Until today, Cloud Computing

has a rapid development and been widely adopted. A large number of web-sites are moved

onto the cloud [4,5,80](e.g., Spotify [81] moved its core infrastructure to Google Cloud on

Feb. 23, 2016). However, DDoS attacks are still very active and even more severe, since

ever-evolving new types of DDoS attacks that exploit various newly discovered network

or system vulnerabilities even in the cloud, bypassing not only the state-of-the-art defense

mechanisms [6, 7] but also the elasticity mechanisms of Cloud Computing [59,82,83].
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Traditional Denial Of service (DoS) attacks hurt the availability of the target service by

overloading its resources [6,7,24]. In the cloud environments, the attacking approaches are

much more flexible and abundant, can be categorized in two classes: external and internal

attacks [25,26]. External attacks are the most orthodox form of DoS [6,7,24]. For example,

VSI-DDoS attacks and Tail attacks [59,82] exploit the external HTTP requests supported

by the victim web-sites deployed in the cloud to create transiant resource bottleneck of the

target Web system and hurt the performance of service, such as long-tail latency problem.

In contrast, internal attacks are new-born, which are emerging simultaneously with Cloud

Computing by virtualization technique [25, 26]. Internal attacks mount the adversarial

programs in the co-located VMs [27] (on the same host with the target VM) can cause

resource contention and performance interference of the target VM and hurt its performance

of service [12,29].

Existing solutions detect and mitigate the performance interference by provider-centric [84,

85] and user-centric [11, 13, 86] approaches. For the provider-centric approach, the cloud

providers profile the infrastructure-level metric from the hosts in the cloud. Due to the con-

sideration of a worthwhile investment of the cloud providers (e.g., profiling overhead should

under 1% [87]), the cloud providers typically adopt coarse granularity monitoring (long-

lived interference detection with several minutes). For example, the sampling intervals of

Amazon’s monitoring tool CloudWatch [48] and Microsoft Azure Application Insights [65]

are both 1 minute, which are used as the trigger metrics for the cloud scaling. In the

chapter [84], the default sampling duration is 10 seconds and sampling frequency is every

1 minute, in this configuration they can detect the interference of several minutes. For the

user-centric approach, the cloud users pretect themselves from performance interference

from their rental VMs (Vitrual Machine) in the cloud. The cloud tenant can sacrifice some

overhead to detect the short-lived (less than a minute) performance interference using more

less sampling interval (e.g., 5 seconds [13, 86]), however, a smaller sampling interval may

incur higher noises (higher false positive) [86].
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In this chapter we present a new type of very-short-lived internal attacks inside the

cloud, which can significantly hurt the performance of web applications in the cloud (such

as contratual violation) while bypassing the elasticity mechanism and the interference de-

tection mechanism in the cloud. In the scenario of the proposed attacks, an attacker

mounts an adversarial program in the co-located VMs with the target VM, which de-

ploys the target web system; it can degrade the performance of the latency-sensitive web

systems through creating very-short-lived (less than 5 seconds) performance interference

among the co-located VMs hosted in the same physical machine in the cloud, which is a

severe threat for the websites requiring the optimal performance and responsiveness, such

as e-commerce, media streaming or online gaming. At the same time, the performance

interference caused by the proposed attacks last in very-short-lived periods (less than 5

seconds), from the Sampling theory, the average system resource utilization ratio can be

in the moderate level using coarse granularity monitoring, not only avoiding the triggering

condition of the cloud scaling but also escaping the state-of-the-art dection mechanisms of

performance interference in the cloud.

To achieve this attack end, the primary challenging task is to choose the target attack

resource. In cloud environments, the shared hardware and software resources among the co-

located VMs are essential for internal attacks, such as network bandwidth [88,89], I/O [90],

last level cache [29], memory lock [29], CPU scheduling mechanism of the hypervisors [91],

even cross-resource contention( [92] measures the impact of network to last level cache).

Those cross-resouce interactions [93] make it more difficult to improve resource efficiency

in the cloud, the same as to detect performance interference due to the increasing difficulty

for indentifying the source of interference. Thus, we choose the total on-chip hardware

resource as the target attack resource. We explore a representative type of internal attacks,

which intermittently triggers the memory bus contention among the co-located VMs, finally

transiently saturates the CPU of the target VM, we name it MemCA in this chapter

(Memory Attacks on the Neighbor’s CPU).
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In brief, this work makes the following contributions:

• We investigate a type of cross-resouce contention that can significantly cause per-

formance interference among the co-located VMs, which can be used to locate a

co-located malicious VMs (virtual machine) with the target VM and degrade its per-

formance.

• We present a type of external Very Short Intermittent DDoS Attacks, MemCA at-

tacks, that leads to the long-tail latency problem (or SLA violations) in web ap-

plications while the average resource utilization of the target servers are far from

saturation.

• We model the impact of our attacks in n-tier systems based-on queuing network

theory, and based-on the proposed model, we implement a feed-back control attack

framework that dynamically tune the optimal attack parameters to fit the dynamics

of system resource state.

• We validate the practicality of our attacks through attack experimental results of

the benchmark website in our private cloud, confirming not only the damage impact

(long-tail latency issue or SLA violations) but also the stealthiness (bypassing the

elasticity mechanisms of Cloud Computing and the detection mechanisms of perfor-

mance interference).

We outline the remainder of this chapter as follows. Section 4.2 introduces the moti-

vated background and states the proposed attack and its assumptions. Section 4.3 exploits

the potential cross-resouce contentions in cloud platforms with all the state-of-the-art hy-

pervisors and profiles the impacts of memory bus attacks in our RUBBoS environments.

Section 4.4 designs a type of internal Very Short Intermittent DDoS Attacks (MemCA at-

tacks), models our attack scenarios in an n-tier system using queuing network theory and

analyzes the corresponding impacts caused by our attacks, implements a feed-back control
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attack framework adjusting the optimal attack parameters to fit the unknowning black-box

target systems. Section 4.5 shows our attack results of RUBBoS [30] benchmark website

in our private cloud, which further confirm the damage and stealthiness of the proposed

attacks, and the practicality of the control framework in more practical Web environments

deployed in the Cloud. Section 4.6 presents the related work and Section 4.7 concludes the

paper.

4.2 Background

4.2.1 Motivations

Infrastructure-as-a-Service (IaaS) cloud computing providers, such as Amazon EC2 [94]

and Microsoft Azure [95], rent computing resources encapsulated as an instance (e.g., a

guest Virtual Machine) to their clients. They define the computing resources of the in-

stance with “coarse grained” granularity, comprising CPU, memory, storage, and network-

ing capacity. This coarse definition of instance is simple and user-friendly to the end-users,

however, technically the providers hide the performance risk [11,12] for the users’ payment,

even the leakage of the private information [27, 96]. The fundamental reason is the ubiq-

uitous phenomenon of performance interference between the co-located instances (in the

same host) inside the cloud [13,85,86].

Although virtualization technique provides a high level of isolated environment mak-

ing a multi-tenant application possible, the level of isolation is far from adequate for the

performance requirement of Service Level Agreement, remaining the observations of per-

formance interference between the co-located VMs [13,29,86]. This significant performance

interference issue in the cloud, blocking the promotion of cloud computing, is due to the

two following main reasons:

1. None-partitionable shared resource: The microarchitecture of physical processors in

Amazon EC2 [94] and Microsoft Azure [97] (e.g., Intel’s “Haswell” processors) to a

large extent uses shared last level cache, memory controller, and memory bus (band-

width) by all the physical cores. These shared on-chip hardware resource is hard to
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partitioned by virtualization technique. For example, Last Level Cache (LLC) [98] are

shared among all the CPUs, and inclusive, which means all data cached in the L1 and

L2 cache must be cached in LLC, and once the data are removed from LLC, they are

also removed from all the low-level caches. This loose sharing mechanism increases

the risk of LLC cache miss and causes performance inference of co-located VMs in

the same host, especially for the cache- and memory-sensitive applications [85].

2. Resource overbooking: To maximum the revenue for the cloud providers, except for

sharing hardware resources, they sometimes overbook their servers for their tenants.

[22] claims a vCPU for Amazon EC2 small instances only can use at most 40% of a

physical core due to overbooking the physical cores.

In the same processor package, except for core-private L1 and L2 caches, last level

cache and memory scheduling components (e.g., memory controller bus, bank scheduler,

channel scheduler) are all shared by co-located VMs (see Figure 4.1). The commercial cloud

providers can assign the Memory size and CPU cores to specific instance for VM [94,95], but

it is insufficient to isolate all the other on-chip memory resources, leading to significant re-

source contention between co-located VMs, such as memory bandwidth, even cross-resource

contention or bottleneck shift. For example, RFA attacks investigate performance degra-

dation caused by Net on LLC [92]; LLC contention causes both co-located VMs to require

more memory bandwidth creating a memory bandwidth bottleneck; memory thrashing

due to increasing cache miss in memory systems press CPU’s scheduling, making CPU

contention for application requests.

In this work, we will focus our investigation on a type of cross-resource contention,

specifically, shared on-chip memory resource contention on CPU of the co-located VMs,

MemCA attacks, and leave exploration of other types of resource contentions to future

work.

76



Figure 4.1. Shared on-chip resources including last level cache and memory scheduling
components (e.g., memory controller bus, bank scheduler, channel scheduler).

4.2.2 Threat Model and Assumptions

We consider a MemCA attack scenario, in which the adversary frequently creates shared

On-Chip memory resource contentions of the victim VMs in the cloud deploying the target

web system by intermittently saturating those shared On-Chip memory resources (e.g., last

level cache, buses, memory channels) without being detected. Today’s software-based VMM

(e.g., Xen, KVM, VMware vSphere, Microsoft Hyper-V) can only guarantee safe accesses

to virtual and physical memory pages, but not to isolate those On-Chip memory resources

shared by the VMs. In this case, the MemCA attacks can increase CPU consumption of the

target VM by the memory attacks in the co-located adversarial VMs, even though vCPUs

are isolated and protected by the hypervisor. Finally, such attacks is to degrade the quality

of service for the target Web systems, especially causing long-tail latency problem (SLO

violation) in the long run.

To effectively launch a MemCA attack, one precondition is the adversarial VMs should

be shared the same host with the target VMs. We assume that the adversary can launch
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at least one VM on the cloud hosts on which the target VMs are running. Many previous

research efforts already provide solutions [27, 80, 99], and orthogonal to our research. Our

attacks are launched in the VMs in the cloud, so we assume that the attacker can fully

control the rented adversarial VMs, in other words, they can run any attacking programs

in those VMs [100], as is the case for today’s public IaaS cloud.

4.3 Memory Contention Measurements

4.3.1 Memory Bus Contention Measurements

In our testbed, we use three servers building up our private cloud, each one equips with

a 12-core, 2-package 1.60 GHz Intel Xeon CPU E5-2603 v3 with 15MB of shared L3 cache

per package and 16GB of main memory, a type of Physical Processors of Intel Xeon family,

which is widely used to host their instances by Amazon EC2 [94]. This private cloud is

managed by Openstack Ocata; each VM, running CentOS release 6.7, is managed by the

hypervisor KVM [101].

The adversarial program to saturate memory bandwidth of the host, RAMspeed, is a

cache and memory benchmarking tool [102]. RAMspeed supports multi processes which

can trigger much more workload to memory bus. Due to having 6 cores per package in our

host, we deploy 6 VMs, each with one vCPU. Thus, the attacking program run in each VM

only with one thread. To comprehensively understand the impact of the chosen attacking

program to the sharing memory bandwidth, we execute the program with one thread in

three scenarios:

1. Same core, 6 VMs sharing all levels of processor cache, [22] focuses on this case to

analyze the significant contention.

2. Same package, 6 VMs each pinned to a separate core on the same package, which

share the last-level cache and memory bandwidth per package.

3. Different package, 6 VMs floating over 12 cores on two packages, which share the

last-level cache and memory bandwidth of both packages.
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When RAMspeed runs with one thread, it can saturate the CPU usage. Table 4.1 shows

memory bandwidth of multi VMs measured by RAMspeed with one thread. 1) When all

the VMs run on the same core, the attacking program has a maximum consumption of

memory bandwidth in spite of the number of VMs (e.g., approximately 6700), since all the

VMs share memory bus for the same physical core. Thus, one adversarial VM maybe not

enough to saturate memory bus as large proportion as possible. 2) In the same package

case, each VM shares the on-chip memory resource (e.g., Last level cache, and the control

Bus). As the number of co-located VMs increase, the used memory bandwidth for each

VM decreases accordingly, due to their competition for the same memory bus per package.

3) For the different package case, the available memory bus should double than the same

package case. Thus, each VM can reach more high memory bandwidth than one in the

same package. When there are 2VMs running on the different core of the different package,

the bandwidth of each one also reach maximum value the attacking program can trigger.

Table 4.1. Measured used memory bandwidth with multi VMs, RAMspeed specifies 1
thread to execute in each VM. MemBW: Memory Bandwidth (MB/s).

Case Co-located VMs (#) 1 2 3 4 5 6
SameCore Used MemBW/VM 6747 3357 2227 1677 1332 1119
SameCore Total Used MemBW 6747 6714 6681 6709 6662 6718
SamePkg Used MemBW/VM 6769 4008 2724 1988 1605 1343
SamePkg Total Used MemBW 6769 8017 8173 7952 8027 8063
DiffPkg Used MemBW/VM 6596 6667 5097 3864 3232 2709
DiffPkg Total Used MemBW 6596 13334 15291 15456 16160 16254

Except for the case of scaling out our attacking VMs (increasing the number of VMs),

we also investigate the case of scaling up our attacking VMs (increasing the number of

vCPU for one attacking VM). Table 4.2 shows memory bandwidth of one VM with 2

vCPUs measured by RAMspeed with multi-thread cases. When threads of RAMspeed

outnumber vCPUS of VM, the effective fractions of the attacking program can not occupy

all the CPU time, although the CPU is saturated during the execution. In other words,

almost half of the CPU cycles is used to thrash in the kernel rather than increase the
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pressure to memory bus in the user space. The takeaway is that the number of threads

of RAMspeed should equal the number of vCPUS of VM to maximum the effectiveness of

RAMspeed. For one thread case, the memory bandwidth in the different package is the

worst, due to the inter-package bus is much slower for the communication between the

two vCPUs. The best scenario is the two attacking threads and two vCPUs in the same

package, they can reach enough memory bandwidth during the least executing time, which

implies that it can incur the most pressure of memory bus per package. Although the same

level of memory bandwidth can measured in the different package case, higher capacity of

memory bus in the different package can disperse the contention of memory bus caused by

RAMspeed.

Table 4.2. Measured used memory bandwidth in a VM with 2 vCPUs, RAMspeed runs
with multi threads. MemBW: Used Memory Bandwidth (MB/s).

Case-#Threads MemBW(MB/s) CPU job got(%) ExecuteTime(s) UserTime(s)
SameCore-1 6490 99 1.8 1.6
SameCore-2 6594 99 3.5 3.2
SameCore-4 7490 59 7.2 3.3
SamePkg-1 6688 99 1.7 1.6
SamePkg-2 8199 98 2.8 2.6
SamePkg-4 9051 48 5.5 2.6
DiffPkg-1 4327 99 2.6 2.4
DiffPkg-2 8253 99 3.4 3.0
DiffPkg-4 8335 51 7.0 3.4

We profile the capacity of servers hosting VMs and pressure level caused by the adver-

sarial program. From the previous experiments we can conclude that

1. One VM or one thread running the attacking program can not trigger the contention

of memory bus, since the bus bandwidth in modern processors may be too high.

2. The biggest impact of memory bus contention is the VMs scheduled in same core, next

in same package, last in different package. This implication is that memory bus can

be split into three cases, including in same core, in same package, in different package.

The capacity for each one increases from top to bottom, as shown in Figure 4.1.
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3. The adversarial program by increasing the VMs or vCPUs can effectively dial up the

pressure of memory bus. For multi-vCPUs approach, the number of threads of the

attacking program should equal the number of vCPUs of the VM. For multi-VMs

approach, the attackers should coordinate and synchronize the adversarial program

in multi-VMs.

4. The most effective attacking condition is the used memory bandwidth caused by the

attacking program is significantly high while keeping the executing time as short as

possible. Only in this case, our attacks can create an effective and stealthy inference

burst. Due to the solutions for long-lived [84, 85](minutes) and short-lived [13,

86](seconds) interference detection, our goal is to create very-short-lived inference

burst (less than 5 seconds, even sub-second).

4.3.2 Memory Bus Contention Measurements in Other VMMs

The previous Memory Bus Contention experiments are conducted in KVM platform, in

order to further confirm that these potential memory bandwidth attacks in the co-located

VMs do not concern the hypervisors and can apply to all the Cloud platform nowadays. We

further conduct the similar experiments in different platform managed by all the popular

hypervisors. Table 4.3 lists all the IaaS vendors and its used hypervors. Table 4.4 lists

measured total used memory bandwidth with multi VMs in various hypervisors in the

same package case, and RAMspeed specifies one thread to run. We can not control the

placement of VMs in Microsoft Azure, so we do not show the results. However, we can

observe the maximum available memory bandwidth of the Azure instances is at same level

(around 3000 MB/s).

4.3.3 Memory Bus Attacks on CPU in RUBBoS

To investigate Memory Bus Attacks on CPU in Clouds, we adopt RUBBoS [30], a

representative n-tier web application benchmark modeled after the popular news website

Slashdot [103]. We use a typical 3-tier configuration, with 1 Apache web server, 1 Tomcat

application Server, and 1 MySQL database server. Figure 4.2 shows RUBBoS sample
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Table 4.3. IaaS Clouds and their Hypervisors. We will profile memory bus contentions in
all of these Hypervisors.

Hypervisors IaaS Clouds
Hyper-V Microsoft Azure

Xen Amazon AWS, M5cloud, Rackspace, Storm, Lecloud,
Gigenet, eApps, NSF-Cloud

KVM Google Compute Engine, Atlantic, E24cloud, Exoscale,
Cloudsigma, Cloudware, Joyent, Vpsnet, Elastichosts

VMware Bitrefinery, Stratogen, Zettagrid, Ddata, Hyve

Table 4.4. Measured total used memory bandwidth (MB/s) with multi VMs in various
Hypervisors in the same package case (except Azure), RAMspeed specifies one thread to
run.

Clouds CPU Freq VMMs 1VM 2VMs 3VMs
Private 1.60GHz KVM 6769 8017 8173
Private 1.60GHz VMware 6857 7725 7803

NSF 2.10GHz Xen 8942 11008 10370

topology in our controlled private cloud. RUBBoS has a workload generator to emulate

the behavior of legitimate users who generate HTTP requests to interact with the target

benchmark website. Each user has an average 7-second think time between receiving a web

page and submitting a new page request. RUBBoS supports 24 different web interactions,

we use CPU-intensive transactions to emulate the legitimate users, since our attack goal is

to trigger the CPU bottleneck of the target VM. We choose four level workloads from low to

high by configuring 1000, 2000, 3000, 4000 concurrent legitimate users, the corresponding

CPU utilization of MySQL from 23% to %72. We deploy our 5 attacking VMs co-located

with MySQL VM, and pin all the 6 VMs in the same package for simplicity. The bad

impact of the same core case is easy to trigger and investigated [22], the different package

case can be extended only by increases more VMs or vCPUs. Our attacking goal is to cause

the SLO violation (e.g., 99ile response time over hundreds of milli-seconds), we gradually

increase the number of co-located attacking VMs until the attack goal is achieved.

Table 4.5 lists the corresponding response time and the CPU utilization of MySQL

under different workloads and attack intensity. When we run RAMspeed in the adversarial
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Figure 4.2. Experimental sample topology in our controlled private cloud. The adversarial
VMs are co-located with MySQL VM.

VM, to achieve the SLO of the latency-intensive workloads (e.g., 99ile response time within

tens of milli-seconds [93]), the CPU utilization of the target VM MySQL increases as the

number of attack VMs increases. Once CPU utilization of the target VM MySQL is over

80%, SLO violation occurs (the yellow cell in the table). If we continue to increase the

contention, CPU utilization of MySQL is saturated, causing more serious performance

problem (the red cell in the table), which is like the flooding DDoS attacks out of our

research. We only focus on how to effectively trigger SLO violation while keeping our

attacks much more stealthy. In additional, it is obvious that to achieve the goal of SLO

violation less VMs are required as the workload increases, the reason is that higher workload

requires more working set of cache and consumes more memory bus, thus less VMs can

trigger effective memory contention.

Table 4.5 also lists the user space CPU utilization of MySQL under different workloads

and attacking intensity. User space CPU utilization implies the amount of time the CPU

was busy executing MySQL daemon code in user space, except its execution in kernel space

(e.g., a system call by MySQL daemon). High user space CPU utilization means that

MySQL daemon must handle more requests during the contention (throughput decreases

and more requests are queued in MySQL daemon), the fundamental reason is the memory

bandwidth contention or LLC contention [11] triggered by our adversarial program, leading

to more CPU time to service the cache misses.
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Table 4.5. Observations of response time and potential bottleneck resource (MySQL CPU
utilization) in RUBBoS environments.

Workload-AttackVMs avgRT(ms) 99ile 98ile 95ile(ms) CPU UserCPU(%)
1K-0VMs 11 32 29 24 23 15
1K-1VMs 12 34 30 25 28 21
1K-2VMs 12 40 35 29 39 30
1K-3VMs 14 60 48 37 51 39
1K-4VMs 16 77 62 47 65 49
1K-5VMs 43 259 206 143 79 55
2K-0VMs 11 35 31 25 40 28
2K-1VMs 12 40 35 28 49 35
2K-2VMs 13 57 47 35 62 46
2K-3VMs 18 81 62 38 78 60
2K-4VMs 22 145 116 81 85 61
2K-5VMs 1738 15740 9673 5928 92 68
3K-0VMs 11 42 35 27 56 38
3K-1VMs 13 58 48 35 66 48
3K-2VMs 17 113 90 62 84 60
3K-3VMs 482 3813 2770 1612 98 70
4K-0VMs 13 64 51 35 72 46
4K-1VMs 17 111 87 57 84 59
4K-2VMs 674 6321 3772 2429 99 70

4.4 MemCA Attacks

4.4.1 MemCA Overview

Through the experiments in Section 4.3, we profile the capacity of the target host and

the attack force of the adversarial program. thus it is feasible to propose the conceptual

framework to make our attacks efficiently and stealthy. To efficiently launch a MemCA

attack while keeping stealthy, the most effective attacking approach is to saturate the

shared source (e.g., the memory bus) quickly in miliseconds or seconds level to bypass the

detection [13, 84, 86], and intermittently repeat this attacking process to cause the long

threat of performance. In other words, our attacks should create very short intermittent

resource contention bursts. To this end, we formally propose MemCA attacks as follows

(Figure 4.3):
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Figure 4.3. An illustration of a MemCA attack, which consists of interference burst volume
V , length L, and interval I.

Effect = A(V, L, I) (4.1)

where,

• Effect is the measure of attacking effectiveness by SLO requirements; we use per-

centile response time as a metric to measure the tail latency of the target system

(e.g., 99ile response time > 100ms). Effect is a function of V , L, I.

• V is the amount (volume) of resource consumption per interference burst. V should be

large enough to temporarily trigger the sharing resource contention (e.g., the memory

bus) in the servers of the cloud.

• L is the period of each interference burst. L should be short enough to guarantee the

burst not to be captured by the interference detection mechanisms [13,84,86].

• I is the time interval between every two consecutive interference bursts. I infers the

frequency of bursts of our attacks. I should be short enough so that the attacker can

generate interference bursts frequent enough to cause significant performance damage

on the target system. On the other hand, too short I makes the attack similar to the

traditional flooding DDoS attacks, which can be easily detected.
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Given this high-level design of MemCA attacks (see Equation 4.1), two key challenges

remain to make MemCA practical. They are addressed in the following Sections.

• How can we crystallize the relationship between attack impacts and attack param-

eters? Section 4.4.2 will generalize and formulate MemCA attacks’ impacts using

queuing network to model the n-tier systems.

• How can the attackers get the optimal attack parameters in the case of unknowing

performance parameters among the n-tier system? Section 4.4.3 will exploit feedback

control theory to dynamcally adjust attack parameters for better attack effectiveness

and stealthiness, even unknowing performance parameters of the target systems.

4.4.2 MemCA Modeling

Queueing networks are typcially used to analyze performance problems and resource

requirements in distributed systems [104], such as n-tier web applications [82]. In queueing

theory, an M/M/1 queue (Kendall notation [105]) is usually exploited to represent one tier

(a single server) with arrival rate of a Poisson process and service rate of an exponential

distribution, such as the RUBBoS model [30]. M/M/1 queue is the fundamental unit to

build up complex queueing networks. Figure 4.4 represents a queueing network of a classic

n-tier web applications in our RUBBoS experiment (1 Apache, 1 Tomcat and 1 MySQL).

We exploit the critical system resource of every tier to denote the corresponding tier, since

typically major portion of the response time of each tier is occupied by the critical system

resource of that tier [9]. For example, CPU is the bottleneck resource in MySQL, thus

we use an M/M/1 queue waiting for CPU to depict MySQL; In Tomcat, there is a DB

connection pool serving querying from MySQL, thus we use an M/M/c queue waiting for

a DB connection denoting Tomcat, here, c denotes the idetential software resource (DB

connection); In Apache, we use the Multi-Processing Module [106] that implements a

hybrid multi-threaded multi-process web server, thus we also use an M/M/c queue waiting

for a thread to denote Apache, here, c denotes a thread.
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Figure 4.4. MemCA attack scenario and system model representing a queueing network of
a classic 3-tier web applications in our RUBBoS experiment.

In our system model, we assume clients’ arrival rate λ is a Poisson process, MySQL’s

service rate µ is an exponential distribution. We also assume µ is constant, which can

imply the capacity of the server. In the n-tier system, we assume the bottleneck resource

is MySQL CPU. One request going through to MySQL holds a thread of each upstream

tier. If the queue of downstream tier is full, the incoming requests will be blocked in the

upstream tier, which leads to the queue overflown propapation phenonema in n-tier systems

[59, 82]. Due to the strong dependency among those distributed nodes, we can explicitly

define the arrival rate and leave rate for each tier in the 3-tier web applications as follows,

here, n is the queue length of each tier, m and k is the queue size of each tier,

λ1n =


λ, for n < m.

0, for n = m.

(4.2)

λ2n = µ1n (4.3)
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λ3n = µ2n (4.4)

µ1n =


µ1, for n < m-1.

µ, for n = m-1.

(4.5)

µ2n =


µ2, for n < k-1.

µ, for n = k-1.

(4.6)

µ3n = µ (4.7)

Our final goal is to get the attack parameters to achieve the predefined attack goal

(e.g., long tail latency). Based on the system model for n-tier systems, we should quantify

the attack impact, in other words, solve the percentile response time in Equation 4.1. In

queueing network theory, prior work [107] has suggested the performance analysis of the

basic unit of an M/M/1 queue with a Poisson distrubition arrival rate λ and an exponential

distrubition service rate µ, the rth percentile value of response time w is given by

πw[r] = W ∗ ln(
100

100− r
) (4.8)

where, W is average response time of a request in the system with an M/M/1 queue.

To solve the percentile response time in n-tier systems, we first analyze it from the

last tier (MySQL), which is modelled by an M/M/1 queue, so we can exploit Equation 4.8

to solve the percentile response time of MySQL. Next, we combine the last tier (MySQL)

and the second last tier (Tomcat) together to analyze the percentile response time of the

second last tier. In our attack period, all the queue in the n-tier system is overflown. Thus,

the service rate of the system is depend on the bottleneck tier, in our case, it is MySQL

CPU ( the system service rate is µ3n). So we can treat Tomcat in our attack period as an
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M/M/1 queue, apply Equation 4.8 to solve the percentile response time of Tomcat, W is

average response time of a request residing in Tomcat, the start time is the request arriving

Tomcat and the end time is the request served by MySQL and returning Apache (How to

estimate the response time can refer to previous papers [59,82]). Similarly, we can analyze

the percentile response time of every upstream tiers until the most front tier. Finally, we

get the percentile response time of the n-tier system.

Here, we present a set of RUBBoS experiments to validate the propsed model and

analysis approach. Figure 4.5 depicts percentile response time of two MemCA Attacks

cases in our RUBBoS experiments: low attack volume and high attack volume, and the

curve line labelled “model” depicts the corresponding value calculated from Equation 4.8

using recursive solving approach mentioned in the previous section. The RUBBoS “tail”

is more obvious than the model “tail”. In M/M/1 model, the average/tail response time

is inversely proportional to 1-order of the unused resource utilization [107]. In practice,

the average/tail response time is inversely proportional to n-order of the unused resource

utilization [108]. Thus, the RUBBoS tail increases faster and more steeply than the model

tail. In additional, in high volume case, the tail of each tiers can be split, there exists gap

of response time between two consecutive tiers at the tail, while in low volume case, the

tails of Client, Apache and Tomcat are nearly overlapped. The reason is in high volume

case, due to the impact of system bottleneck of MySQL CPU, more and more requests are

queued in somewhere of the n-tier system, some are queued in MySQL waiting for MySQL

CPU, some are queued in Tomcat waiting for DB connection, some are queued in Apache

waiting for thread. Each request queued in upstream tier can be served only after some

requests are released from the downstream tier. Thus, it has a large waiting time for each

tier. Especially, for the Client tail, it increases dramatically, that’s beacuse the dropped

requests by Apache can lead to TCP retransmission (its Timeout expiration is in several

seconds). However, in low volume case, there are few requests queued in the upstream

tiers, so it has a small waiting time for those upsteam tiers.
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(b) High attack volume scenario

Figure 4.5. Percentil response time of MemCA attack experiments: Model and RUBBoS
experimental results.

To keep our attack stealthy while effective, we choose the ON-OFF pattern to inter-

mittently launch very short high volume attacks as Equation 4.1. Equation 4.8 only can be

applied in the ON attack period, and during the OFF attack, the system returns normal

status with low queued requests, we can consider that there exists no long tail latency in

the OFF attack period. Thus, during a MemCA attack, the percentile response time of the

n-tier system, π̂w[r], should be recalucated given by Equation 4.9, and we also substitute

πw[r] with Equation 4.8.

π̂w[r] = (
L

L+ I
) ∗ πw[r] = (

L

L+ I
) ∗W ∗ ln(

100

100− r
) (4.9)
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In queue theory, the average response time of an application W is inversely proportional

to the unused critical resource utilization [11,107], in MemCA attacks, we control the used

critical resource utilization of the target VM, ρ, through tuning the attack volume V.

Therefore, mathematically, π̂w[r] ∼ W ∼ 1/(1-ρ) ∼ V.

In addtional, we should control the interference length [109] of our attacks to guarantee

our attacks escapce the detection of performance interference (typically based on several

seconds monitoring) and invalidate the Cloud scaling mechanisms (based on 1 minute

monitoring). To this end, we control L less than 5 seconds of each ON attack period, such

that the average utizliation can be in moderate level from Sampling theory (such as 50%)

far from the alert thread of dection tools and the trigger condition of scaling mechanisms.

4.4.3 MemCA Implementation

From the attacker’s point of view, the target n-tier system is a black-box, it is hard

to know performance parameters among the n-tier system accurately. Given the proposed

model and analysis approaches, to get the optimal attack parameters, we should estimate

the response time of the transactions supported by the target web applications. Previous

works give us a lot of solutions to estimate the response time for the complex distributed

system [9]. We also need to know the critical resource utilization of the target n-tier system,

such as the thread pool of Apache, the DB connection pool of Tomcat, CPU of MySQL.

However, it is impossible to get these white-box information. From the analysis based

on the proposed model, we understand those critical resource has a positive relationship

with the attack volume among the n-tier system. Therefore, we can exploit some advanced

feedback control tools (such as Kalman filter [68]) to dynamcally tune the attack parameters

to fit the unknowing system state and the shifty background workload [82].

To effectively launch and control MemCA attacks, we propose an attack framework

including two parts: MemCA front end (MemCA-FE) and MemCA back end (MemCA-

BE) (Figure 4.6). MemCA-FE creates co-located VMs with the target VM, executes the

adversarial program in each VM and reports the consumption of the sharing resource.
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MemCA-BE consists of two entities: the prober which periodically sends HTTP requests

to the target Web systems and monitors the performance metrics of the target, and the

commander which dynamically controls the attacking parameters of the attacking VMs

based on QoS and resource metrics of the historical attacking bursts.

Figure 4.6. MemCA attack framework including two parts: MemCA attack front-end
(MemCA-FE) and MemCA control back-end (MemCA-BE).

In MemCA-FE, we can record the critical resource utilization consumed by the attack

VMs through the attack program (e.g., the RAMspeed benchmark). In our attack case, the

critical resource is the memory bandwidth of physical machine hosting the attack VMs and

the target VM. We also can profile the peak/maximum memory bandwidth in a specific

hardware platform same as the target host machine. Finally, we normalize the resource

usage ratio using the absolute value of measured memory bandwidth.

Here, we treat the n-tier system as a black-box M/M/1 queue, and measure the average

and percentile response time of the transactions supported by the target system in the
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prober of MemCA-BE. Due to the positive relationship between the response time and the

resouce utilization, we can tune the attack volume V using feedback control technology, to

control the target resource utilization and furture cause long tail latency problem or tail

latency violations. Through adjusting the burst length L and the burst interval I, we can

achieve a expected percentile response time of the target application (see Equation 4.9).

We also can record the execution time of the attack program (e.g., the RAMspeed

benchmark) in the attack VMs in MemCA-FE. We assume the program can attack the

bottleneck resource of the target host. During the execution time of the attack program, the

target bottleneck resource is always busy and saturated. Thus, we can exploit the execution

tiem as the interference length of the critical resource, further control the burst length L

to bypass the state-of-the-art cloud detection of performanc interference. In practice, this

approach is very conservative, during the execution time of the attack program there exist

many tiny time slots the bottleneck resource can be idle. The actual attack can be more

stealthy than the measured value using the execution time to estimate interference length.

4.5 MemCA Evaluation

Here, we use the RUBBoS benchmark web applications (the exprimental testbed and

RUBBoS configurations refer to Section 4.3.1 and Section 4.3.3, respectively) to evaluate

MemCA attacks from three aspects: the damage result and the stealthy results under cloud

scaling and under cloud detection of performance interferrence.

4.5.1 MemCA in RUBBoS

In Section 4.3.3, we have shown the flooding memory bus attacks in RUBBoS (see red

cells in Table 4.5). In that case, we do not adopt the ON-OFF attack pattern in Sec-

tion 4.4.1, and we also do not exploit the feedback control to dynamically tune the optimal

attack paratemters in Section 4.4.3. That’s why CPU utilization of the target VM is always

over than 90%, even full saturated. Here, based on the memory bus profiling of the target

host in Section 4.3 and the model analysis and dynamically feedback control implementa-

tion in Section 4.4, we launch MemCA attacks in our private cloud environments to see the
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attack impact. We fix the attack burst interval I as 10 seconds, and through the feedback

control tools to adjust the optimal attack volume V and the burst length L. We predefine

the attack goal is to cause the tail latency violations (such as 99% percentile response

time bigger than 100 milli-seconds, which is Google’s search Service Level Objective) and

to bypass the state-of-the-art detection of performance interference (e.g., the interference

length is less than 5 seconds).

Figure 4.7 illustrates the 3-minute detailed experimental results with 3000 concurrent

legitimate users under MemCA attacks launched by our control framework. We use two

co-located VMs with the target VM (see Figure 4.2) to execute the attack program, these

VMs are pinned in the same package in the same host in our private cloud, since two VMs

are enough to saturate the memory bus in a host (see Table 4.1). Figure 4.7, a shows the

point-in-time response time of the legitimate users under 3-minute MemCA attacks using

50ms granularity to caculate, the 99% percentile response time is bigger than 100 milli-

seconds (not shown in the graph), the normal response time is around 10 seconds, and

the peak response time is nearly 130 milli-seconds. We can see the periodic pulse of the

response time every 10 seconds caused by the periodic ON-OFF MemCA attacks. Figure

4.7, c and 4.7, e show the corresponding attack volume and burst length recorded from

the two attack VMs. The burst length are both around 2.5 seconds, far from the target

performance interference length 5 seconds. Figure 4.7, d, 4.7, b, and 4.7, f zoom up an

attack burst of 10 seconds (the burst occurs at the time point of 20 seconds), explaining the

fundamental reason of the deterioration of response time. At the time point of 20 seconds,

the two attack VMs simultaneously execute the attack program to occupy the memory bus

of the target host. In this point, they will shrink the available memory bus for the co-located

MySQL VM, so it leads to more cache miss in MySQL VM (it is low level metric from the

cloud providers, which will be shown in Section 4.5.3). It causes the User CPU usage of

MySQL VM increases as shown in Figure 4.7, b, due to cache miss. Finally, the total CPU

usage of MySQL is saturated during the attack burst as shown in Figure 4.7, d. Such milli-
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bottleneck in the n-tier system leads to long response time as shown in Figure 4.7, f [59,82].

In general, through the experimental results in the RUBBoS benchmark web application in

our private cloud, we can confirm the damage and stealthiness impacts of MemCA attacks.

4.5.2 MemCA in Cloud Elasticity

Amazon supplies Elastic Load Balancing in its cloud platform AWS to guarantee scal-

ability, performance, and security for any application [110]. It can elastically scale to the

demands of the customers due to the ability to trigger Auto Scaling [46] in the available

Amazon EC2 instance fleet. The trigger mechanism of Auto Scaling is based on coarse

granularity monitoring tool, Amazon CloudWatch [48], which sampling period is 1 minute.

For example, the customers’ application can scale up more instances once the average

CPU utilization of all the instances exceeds a preconfigured threshold (e.g., 85%) during

a 1-minute sampling period. Thus, to validate whether Cloud Elasticity can mitigate our

attack, it only requires to verify whether our attack will offend the threshold of Auto Scal-

ing. Here, in our experiments we assume the preconfigured threshold of scaling up more

instances is 85% of the average CPU utilization, which is usually a feasible and simple

solution for system administrators [51,52].

Figure 4.8 depicts CPU uitilization of the bottleneck tier MySQL in the previous 3-

minute MemCA attacks experiments using different sampling granularity. Figure 4.8, a,

4.8, b, and 4.8, c respectively utilize 1-minute, 1-second, and 50-milli-second of monitoring

granularity. The average utilization in 1-minute case is flat and moderate, it is obvious that

it will not trigger the condition of Auto Scaling (e.g., Amazon Elastic Load Balancing).

Using 1-second monitoring, it just shows a little bit fluctuation. Only using more fine-

grained graunilairy 50 milli-seconds, we can observe the saturation of CPU uitilization.

These peek value occurs frequently but transiently, thus the average value is at moderate

level from Sampling theory as shown in Figure 4.8, a and 4.8, b . That’s the essential

reason why MemCA attacks can bypass the state-of-the-art cloud elasiticity mechanisms.

Figure 4.8, d zooms up an attack burst of 10 seconds (the burst occurs at the time point of
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ity. The peak response time is nearly
130 milli-seconds.
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(b) User CPU usage of MySQL VM
during an attack burst starting at the
time point of 20 seconds. User CPU
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80% after the attack burst start.
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(d) Total CPU usage of MySQL is
saturated when User CPU usage of
MySQL is in the peak period.
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Figure 4.7. MemCA in RUBBoS. Figure 4.7, a, 4.7, c, and 4.7, e show the performance
impact (response time) caused by MemCA attacks during the 3-minute RUBBoS experi-
ments. Figure 4.7, b, 4.7, d, and 4.7, f explain cause and result of MemCA attacks through
zooming up an ON-OFF attack burst.
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20 seconds), noting that the CPU saturation period last approximately 1 second. Through

tuning the attacking paramters, we can control the saturation period to ensure the moderate

average utilization of the target VMs.
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(a) Using 1min monitoring, CPU uti-
lization can exceed the trigger condi-
tion of Auto Scaling.
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Figure 4.8. MemCA in Cloud elasticity. The average utilization is at moderate level in
Figure 4.8, a, not triggering the condition of Auto Scaling (e.g., CPU utilization is > 85%.),
even though the performance of the target applications experiences long response time as
shown in Figure 4.7, a under MemCA attacks.

4.5.3 MemCA in Cloud Detection of Performance Interference

The sources of performance interference inside the cloud typcially are low-level metrics

(e.g., hardware performance counts), which can not be measured for the customers of VMs,

such as cache miss, memory bandwidth, etc. Thus, most detection approaches of perfor-

mance interference are based on the low-level monitoring tools, such as Xentrace [111],

OProfile [112]. Here, we use OProfile to measure LLC cache miss, since we try to intermit-

tently saturate memory bus of the host in our private cloud, LLC cache miss is the most

relevant hardware performance count with our attacks. We also use different monitoring
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granularity to sample the chosen hardware performance count, similar with the observa-

tion of MySQL in Figure 4.8, we will show what’s the difference among them for MemCA

attacks.

Figure 4.9 shows LLC cache miss of physical machine hosting MySQL and its co-

located VMs (PM3 in Figure 4.2) in the previous 3-minute MemCA attacks experiments

using different sampling granularity. Figure 4.9, a, 4.9, b, and 4.9, c respectively use 1-

minute, 10-second, and 1-second of monitoring granularity to record the amount of LLC

cache miss. Since the attack interval of MemCA attacks in our experiments is 10 seconds,

only using less than 10-second sample (e.g. 1-second) can trace the ON-OFF pattern of

our attacks as shown in Figure 4.9, c. To further illustrate the attack pattern, we zoom up

Figure 4.9, c to show LLC cache miss during a burst in Figure 4.9, d, noting the period of

the peak is the length of performance interference, during which the end-user perceives the

long response time as shown in Figure 4.7, f. To sum up, we confirm the same conclusion

that the performance interference length is more important for the detection mechism [22],

rather than the peak value. That’s explain that why MemCA attacks model the interference

length in Section 4.4.2 and estimate the interference length in Section 4.4.3, ensuring its

high stealthy.

4.6 Related Work

In this section, we review the most relevant work with regard to memory performance

attacks and cross-resource interference in the cloud.

Memory is a critical bridge in modern computer architecture linking the high speed

device (e.g., CPU) with low speed device (e.g.,disk), a good design hardware and software

of using memory can smoothly blance the workload and siginificantly speedup the whole

performance of the system. On the contrary, memory is also a most frequent computer

resource exploited by the attacker to degrade the performance of the target system. The

scenarios of memory performance attacks in multi-core systems [113] are too old to hold in

modern hardward and cloud platforms. Zhang et al. [29] exploit two types of memory con-
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Figure 4.9. MemCA in Cloud detection of performance interference. Since the attack
interval of MemCA attacks in our experiments is 10 seconds, only using less than 10-
second monitoring granularity (e.g. 1-second as shown in Figure 4.9, c, 4.9, d) can trace the
ON-OFF pattern of our attacks.

tentions, storage-based contention (LLC cleansing attack) and scheduling-based contention

(exotic atomic locking attack), to degrade the performance of applications deployed in the

cloud. Mehmet et al. [114] attack memory bus, focusing on the mobile device lauched

by the attack APP. Compared to previous memory attacks, we investigated memory bus

attacks, which can influence CPU of co-located VMs inside the cloud. This type of cross-

resource attacks (the impact is CPU while the source is memory) is more hard to detect

by the defender. More strikingly, the scenario of our attacks is on n-tier systems, in which

there typically exists strong dependency among the distributed nodes [82], the damage of

our attacks (long-tail latency) can be even stealthy and severe, due to tail amplification.

Mitigating a type of resource interference in the cloud can be feasible and easy to detect,

widely investiged [84, 85, 115, 116]. Cross-resource interactions (e.g., MemCA attacks, the
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impact is CPU while the source is memory) is a more difficult problem than single resource

interference. Resource freeing attack [92] proposed one type of resource stealing attacks in

the Cloud through cross-Resource interference, where a malicious VM increases its usage

of network traffic to grab LLC from the co-located victim VMs. Heracles [93] integrated

multiple isolation schemes to improve resource efficiency while satisfying latency critical

workloads, but it requires a complex design since the number of possible interactions scales

with the square of the number of interference sources due to cross-resource interferences.

Finaly, after the continual efforts for the final goal in data-center (high utilization, low

interference, and fast latency), Google’s engineer has to admit that this is a tough and

impossible task on the modern CPU architecture [117]. In fact, MemCA attack is a repre-

sentative issue of high utilization, high interference and slow latency; mitigating MemCA

attacks equals achieving the final goal for the cloud providers.

4.7 Conclusion

In this chapter, we described MemCA Attacks, a new type of external Very Short

Intermittent DDoS Attacks [59], in which an attacker exploits a newly identified system

vulnerability (resource contention in the colocated VMs inside the cloud) of n-tier web ap-

plications to cause the long-tail latency problem of the target web application with a higher

level of stealthiness. We investigated a type of cross-resouce contention that can cause tran-

sient CPU saturations of the target VM through intermittently saturating the memory bus

of the host by the co-located VMs, which can be used to locate a co-located malicious

VMs (virtual machine) with the target VM and degrade its performance(Section 4.3). We

modeled the n-tier systems using queuing network theory, and analyzed the damage and

stealthy results of MemCA attacks. Based-on the proposed model, we implement a feed-

back control attack framework that dynamically tune the optimal attack parameters to

fit the dynamics of system resource state(Section 4.4). To validate the practicality of our

attacks, we evaluated our attacks through RUBBoS benchmark web applications in our

private cloud (Section 4.5, and confirmed that our attacks can not only cause the damage
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impact (long-tail latency issue or SLA violations) but also invalidate the elasticity mech-

anisms of Cloud Computing and the detection mechanisms of performance interference.

In generally, MemCA Attacks is an important constituent part of Very Short Intermittent

DDoS Attacks, the proposed attack in this dissertation.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

Despite of the benefits of cloud computing, many research efforts find the system vul-

nerability in the cloud in Chapter 1. I extend those works from the attacker’s point of view,

and exploit these existing system vulnerabilities and dig novel system holes to mount new

types of attacks as an important complement for emerging DDoS attacks. We first present

a new type of low volume application layer DDoS attacks, Very Short Intermittent DDoS

(VSI-DDoS) Attacks , which can create transiently resource saturation of the target n-tier

web system, causing long-tail latency (or SLA violations) while the average utilization of

the target system is at moderate level guarantee its stealthiness.

In today’s cloud enviornment, this attack can be catigorize into two types: external

VSI-DDoS attacks and internal VSI-DDoS attacks. VSI-DDoS attacks (Chapter 2) and

Tail attacks (Chapter 3) are two types of external VSI-DDoS attacks, which are launched

by the external attack requests (heavy HTTP requests, refer to Section 2.4). Chapter 2

introduced the unque root of VSI-DDoS attacks, Very Short Bottleneck or Milli-bottleneck.

To effectively launch external VSI-DDoS attacks, this chapter proposed an attack frame-

work, which is based on the empirical approach, to get the attack parameters statically.

Chapter 3 digged into the fundamental cause of external VSI-DDoS attacks, modeled the

target system with queuing network thory and analyzed the damage impact with damage

length and predicted the stealthiness level with milli-bottleneck length. To improve the

attack framework in Chapter 2, we exploit a feedback control tool (e.g., Kalman filter) to

implement a feedback control attack framework, which can dynamically tune the optimal

attack parameters to fit the shifts of the background workload and the system state.

MemCA attacks (Chapter 4) is a type of internal VSI-DDoS attacks, which are launched

by the adversarial attack program executed in the co-located VMs to cause the transiant

resource contention with their co-located target VM. Chapter 4 introduced a type of cross-
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resource internal VSI-DDoS attacks. The attacker can cause the transiant CPU saturation

of the target VM through intermittently saturating the memory bus in the malicious VMs.

We also modelled the target n-tier system with queuing network thory and analyzed the

long-tail latency caused by internal VSI-DDoS attacks, and implement a feedback control

internal attack framework.

Through the experimental results verifying the damage of a series of the proposed at-

tacks (external attacks and internal attacks) in Chapter 2, 3, 4, we confirm that this work

(the proposed VSI-DDoS attacks) can efficiently and stealthily degrade the performance of

the target Web applications deployed in the cloud, causing long-tail latency issue (or SLA

violations). We also show that our attack not only can bypass the state-of-the-art DDoS

defend mechinsms, but also avoid the detection of performance interference in the cloud,

even invalidate the cloud elasiticy mechinsms of auto-scaling.

Overall, through highlighting the practicality and impact of Very Short Intermittent

DDoS Attacks, I safely expect that this work will motivate cloud providers to furnish much

securer infrastructure to develop and deploy Web applications in the cloud.

5.2 Future Work

Very Short Intermittent DDoS Attacks aim at transiently saturating the critical bot-

tleneck resource (e.g., database CPU, last level cache, memory bandwidth) of the target

systems by external heavy requests outside the cloud or internal resource contention inside

the cloud, which can saturate the critical resource of the system with much lower volume

(thus less bots are needed) compared to that of traditional flooding DDoS attacks which

usually try to fully saturate the target network bandwidth. In depth, we can dig into all

sources of performance interference in the cloud platform to launch Very Short Intermit-

tent DDoS Attacks, such as shared on-core resources (last level cache, memory bus), shared

off-core resources (disk I/O, network bandwidth), global software resources (the schedul-

ing algorithm of hypervisors) and other scheduled activity (periodic garbage collection in

garbage-collected languages, overhead of monitoring or sampling tool).
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In addition, we can evaluate Very Short Intermittent DDoS Attacks in different ap-

plication dimensionality in the future. Except for the percentile latency, we can hurt the

availability of data service in a “Very Short Intermittent” pattern in SaaS cloud plat-

form, such as Dropbox, Google Drive, and Microsoft OneDrive. We also can investigate

very short intermittent attacks for Web applications of various latency levels in different

stealthy approaches, such as very low-latency services (e.g., search, content delivery) and

a little longer latency tasks (e.g., online stream, video, recognition) run in today’s elastic

cloud platform. Additionally, emerging Internet of Thins (IoT) applications (e.g., Google

Glass) in IoT cloud backends also can be the target of the proposed attacks. I expect

that Very Short Intermittent DDoS Attacks is a type of advanced persistent threat in the

long run, the notable obstacle blocking the rapid development and applications of cloud

computing technology.
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